|
import abc
|
|
import torch
|
|
|
|
from sgmse import sdes
|
|
from sgmse.util.registry import Registry
|
|
|
|
|
|
CorrectorRegistry = Registry("Corrector")
|
|
|
|
|
|
class Corrector(abc.ABC):
|
|
"""The abstract class for a corrector algorithm."""
|
|
|
|
def __init__(self, sde, score_fn, snr, n_steps):
|
|
super().__init__()
|
|
self.rsde = sde.reverse(score_fn)
|
|
self.score_fn = score_fn
|
|
self.snr = snr
|
|
self.n_steps = n_steps
|
|
|
|
@abc.abstractmethod
|
|
def update_fn(self, x, y, t, *args):
|
|
"""One update of the corrector.
|
|
|
|
Args:
|
|
x: A PyTorch tensor representing the current state
|
|
t: A PyTorch tensor representing the current time step.
|
|
*args: Possibly additional arguments, in particular `y` for OU processes
|
|
|
|
Returns:
|
|
x: A PyTorch tensor of the next state.
|
|
x_mean: A PyTorch tensor. The next state without random noise. Useful for denoising.
|
|
"""
|
|
pass
|
|
|
|
|
|
@CorrectorRegistry.register(name='langevin')
|
|
class LangevinCorrector(Corrector):
|
|
def __init__(self, sde, score_fn, snr, n_steps):
|
|
super().__init__(sde, score_fn, snr, n_steps)
|
|
self.score_fn = score_fn
|
|
self.n_steps = n_steps
|
|
self.snr = snr
|
|
|
|
def update_fn(self, x, y, t, *args):
|
|
target_snr = self.snr
|
|
for _ in range(self.n_steps):
|
|
grad = self.score_fn(x, y, t, *args)
|
|
noise = torch.randn_like(x)
|
|
grad_norm = torch.norm(grad.reshape(grad.shape[0], -1), dim=-1).mean()
|
|
noise_norm = torch.norm(noise.reshape(noise.shape[0], -1), dim=-1).mean()
|
|
step_size = ((target_snr * noise_norm / grad_norm) ** 2 * 2).unsqueeze(0)
|
|
x_mean = x + step_size[:, None, None, None] * grad
|
|
x = x_mean + noise * torch.sqrt(step_size * 2)[:, None, None, None]
|
|
|
|
return x, x_mean
|
|
|
|
|
|
@CorrectorRegistry.register(name='ald')
|
|
class AnnealedLangevinDynamics(Corrector):
|
|
"""The original annealed Langevin dynamics predictor in NCSN/NCSNv2."""
|
|
def __init__(self, sde, score_fn, snr, n_steps):
|
|
super().__init__(sde, score_fn, snr, n_steps)
|
|
self.sde = sde
|
|
self.score_fn = score_fn
|
|
self.snr = snr
|
|
self.n_steps = n_steps
|
|
|
|
def update_fn(self, x, y, t, *args):
|
|
n_steps = self.n_steps
|
|
target_snr = self.snr
|
|
std = self.sde.marginal_prob(x, y, t, *args)[1]
|
|
|
|
for _ in range(n_steps):
|
|
grad = self.score_fn(x, y, t, *args)
|
|
noise = torch.randn_like(x)
|
|
step_size = (target_snr * std) ** 2 * 2
|
|
x_mean = x + step_size[:, None, None, None] * grad
|
|
x = x_mean + noise * torch.sqrt(step_size * 2)[:, None, None, None]
|
|
|
|
return x, x_mean
|
|
|
|
|
|
@CorrectorRegistry.register(name='none')
|
|
class NoneCorrector(Corrector):
|
|
"""An empty corrector that does nothing."""
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
self.snr = 0
|
|
self.n_steps = 0
|
|
pass
|
|
|
|
def update_fn(self, x, t, *args):
|
|
return x, x
|
|
|