|
import abc
|
|
|
|
import torch
|
|
import numpy as np
|
|
|
|
from sgmse.util.registry import Registry
|
|
|
|
|
|
PredictorRegistry = Registry("Predictor")
|
|
|
|
|
|
class Predictor(abc.ABC):
|
|
"""The abstract class for a predictor algorithm."""
|
|
|
|
def __init__(self, sde, score_fn, probability_flow=False):
|
|
super().__init__()
|
|
self.sde = sde
|
|
self.rsde = sde.reverse(score_fn)
|
|
self.score_fn = score_fn
|
|
self.probability_flow = probability_flow
|
|
|
|
@abc.abstractmethod
|
|
def update_fn(self, x, t, *args):
|
|
"""One update of the predictor.
|
|
|
|
Args:
|
|
x: A PyTorch tensor representing the current state
|
|
t: A Pytorch tensor representing the current time step.
|
|
*args: Possibly additional arguments, in particular `y` for OU processes
|
|
|
|
Returns:
|
|
x: A PyTorch tensor of the next state.
|
|
x_mean: A PyTorch tensor. The next state without random noise. Useful for denoising.
|
|
"""
|
|
pass
|
|
|
|
def debug_update_fn(self, x, t, *args):
|
|
raise NotImplementedError(f"Debug update function not implemented for predictor {self}.")
|
|
|
|
|
|
@PredictorRegistry.register('euler_maruyama')
|
|
class EulerMaruyamaPredictor(Predictor):
|
|
def __init__(self, sde, score_fn, probability_flow=False):
|
|
super().__init__(sde, score_fn, probability_flow=probability_flow)
|
|
|
|
def update_fn(self, x, y, t, *args):
|
|
dt = -1. / self.rsde.N
|
|
z = torch.randn_like(x)
|
|
f, g = self.rsde.sde(x, y, t, *args)
|
|
x_mean = x + f * dt
|
|
x = x_mean + g[:, None, None, None] * np.sqrt(-dt) * z
|
|
return x, x_mean
|
|
|
|
|
|
@PredictorRegistry.register('reverse_diffusion')
|
|
class ReverseDiffusionPredictor(Predictor):
|
|
def __init__(self, sde, score_fn, probability_flow=False):
|
|
super().__init__(sde, score_fn, probability_flow=probability_flow)
|
|
|
|
def update_fn(self, x, y, t, stepsize):
|
|
f, g = self.rsde.discretize(x, y, t, stepsize)
|
|
z = torch.randn_like(x)
|
|
x_mean = x - f
|
|
x = x_mean + g[:, None, None, None] * z
|
|
return x, x_mean
|
|
|
|
|
|
@PredictorRegistry.register('none')
|
|
class NonePredictor(Predictor):
|
|
"""An empty predictor that does nothing."""
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
pass
|
|
|
|
def update_fn(self, x, y, t, *args):
|
|
return x, x
|
|
|