|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from .ncsnpp_utils import layers, layerspp, normalization
|
|
import torch.nn as nn
|
|
import functools
|
|
import torch
|
|
import numpy as np
|
|
|
|
from .shared import BackboneRegistry
|
|
|
|
ResnetBlockDDPM = layerspp.ResnetBlockDDPMpp
|
|
ResnetBlockBigGAN = layerspp.ResnetBlockBigGANpp
|
|
Combine = layerspp.Combine
|
|
conv3x3 = layerspp.conv3x3
|
|
conv1x1 = layerspp.conv1x1
|
|
get_act = layers.get_act
|
|
get_normalization = normalization.get_normalization
|
|
default_initializer = layers.default_init
|
|
|
|
|
|
@BackboneRegistry.register("ncsnpp_v2")
|
|
class NCSNpp_v2(nn.Module):
|
|
"""NCSN++ model, adapted from https://github.com/yang-song/score_sde repository"""
|
|
|
|
@staticmethod
|
|
def add_argparse_args(parser):
|
|
parser.add_argument("--nf", type=int, default=128)
|
|
parser.add_argument("--ch_mult",type=int, nargs='+', default=[1,1,2,2,2,2,2])
|
|
parser.add_argument("--num_res_blocks", type=int, default=2)
|
|
parser.add_argument("--attn_resolutions", type=int, nargs='+', default=[16])
|
|
return parser
|
|
|
|
def __init__(self,
|
|
nf = 128,
|
|
ch_mult = (1, 1, 2, 2, 2, 2, 2),
|
|
num_res_blocks = 2,
|
|
attn_resolutions = (16,),
|
|
nonlinearity = 'swish',
|
|
resamp_with_conv = True,
|
|
fir = True,
|
|
fir_kernel = [1, 3, 3, 1],
|
|
skip_rescale = True,
|
|
resblock_type = 'biggan',
|
|
progressive = 'output_skip',
|
|
progressive_input = 'input_skip',
|
|
progressive_combine = 'sum',
|
|
init_scale = 0.,
|
|
fourier_scale = 16,
|
|
image_size = 256,
|
|
embedding_type = 'fourier',
|
|
dropout = .0,
|
|
**unused_kwargs
|
|
):
|
|
super().__init__()
|
|
self.act = act = get_act(nonlinearity)
|
|
|
|
self.nf = nf = nf
|
|
ch_mult = ch_mult
|
|
self.num_res_blocks = num_res_blocks = num_res_blocks
|
|
self.attn_resolutions = attn_resolutions = attn_resolutions
|
|
self.num_resolutions = num_resolutions = len(ch_mult)
|
|
self.all_resolutions = all_resolutions = [image_size // (2 ** i) for i in range(num_resolutions)]
|
|
self.skip_rescale = skip_rescale = skip_rescale
|
|
self.resblock_type = resblock_type = resblock_type.lower()
|
|
self.progressive = progressive = progressive.lower()
|
|
self.progressive_input = progressive_input = progressive_input.lower()
|
|
self.embedding_type = embedding_type = embedding_type.lower()
|
|
|
|
assert progressive in ['none', 'output_skip', 'residual']
|
|
assert progressive_input in ['none', 'input_skip', 'residual']
|
|
assert embedding_type in ['fourier', 'positional']
|
|
combine_method = progressive_combine.lower()
|
|
combiner = functools.partial(Combine, method=combine_method)
|
|
|
|
in_channels = 4
|
|
out_channels = 2
|
|
self.output_layer = nn.Conv2d(in_channels, out_channels, 1)
|
|
|
|
modules = []
|
|
|
|
if embedding_type == 'fourier':
|
|
|
|
modules.append(layerspp.GaussianFourierProjection(
|
|
embedding_size=nf, scale=fourier_scale
|
|
))
|
|
embed_dim = 2 * nf
|
|
elif embedding_type == 'positional':
|
|
embed_dim = nf
|
|
else:
|
|
raise ValueError(f'embedding type {embedding_type} unknown.')
|
|
|
|
modules.append(nn.Linear(embed_dim, nf * 4))
|
|
modules[-1].weight.data = default_initializer()(modules[-1].weight.shape)
|
|
nn.init.zeros_(modules[-1].bias)
|
|
modules.append(nn.Linear(nf * 4, nf * 4))
|
|
modules[-1].weight.data = default_initializer()(modules[-1].weight.shape)
|
|
nn.init.zeros_(modules[-1].bias)
|
|
|
|
AttnBlock = functools.partial(layerspp.AttnBlockpp,
|
|
init_scale=init_scale, skip_rescale=skip_rescale)
|
|
|
|
Upsample = functools.partial(layerspp.Upsample,
|
|
with_conv=resamp_with_conv, fir=fir, fir_kernel=fir_kernel)
|
|
|
|
if progressive == 'output_skip':
|
|
self.pyramid_upsample = layerspp.Upsample(fir=fir, fir_kernel=fir_kernel, with_conv=False)
|
|
elif progressive == 'residual':
|
|
pyramid_upsample = functools.partial(layerspp.Upsample, fir=fir,
|
|
fir_kernel=fir_kernel, with_conv=True)
|
|
|
|
Downsample = functools.partial(layerspp.Downsample, with_conv=resamp_with_conv, fir=fir, fir_kernel=fir_kernel)
|
|
|
|
if progressive_input == 'input_skip':
|
|
self.pyramid_downsample = layerspp.Downsample(fir=fir, fir_kernel=fir_kernel, with_conv=False)
|
|
elif progressive_input == 'residual':
|
|
pyramid_downsample = functools.partial(layerspp.Downsample,
|
|
fir=fir, fir_kernel=fir_kernel, with_conv=True)
|
|
|
|
if resblock_type == 'ddpm':
|
|
ResnetBlock = functools.partial(ResnetBlockDDPM, act=act,
|
|
dropout=dropout, init_scale=init_scale,
|
|
skip_rescale=skip_rescale, temb_dim=nf * 4)
|
|
|
|
elif resblock_type == 'biggan':
|
|
ResnetBlock = functools.partial(ResnetBlockBigGAN, act=act,
|
|
dropout=dropout, fir=fir, fir_kernel=fir_kernel,
|
|
init_scale=init_scale, skip_rescale=skip_rescale, temb_dim=nf * 4)
|
|
|
|
else:
|
|
raise ValueError(f'resblock type {resblock_type} unrecognized.')
|
|
|
|
|
|
|
|
channels = in_channels
|
|
if progressive_input != 'none':
|
|
input_pyramid_ch = channels
|
|
|
|
modules.append(conv3x3(channels, nf))
|
|
hs_c = [nf]
|
|
|
|
in_ch = nf
|
|
for i_level in range(num_resolutions):
|
|
|
|
for i_block in range(num_res_blocks):
|
|
out_ch = nf * ch_mult[i_level]
|
|
modules.append(ResnetBlock(in_ch=in_ch, out_ch=out_ch))
|
|
in_ch = out_ch
|
|
|
|
if all_resolutions[i_level] in attn_resolutions:
|
|
modules.append(AttnBlock(channels=in_ch))
|
|
hs_c.append(in_ch)
|
|
|
|
if i_level != num_resolutions - 1:
|
|
if resblock_type == 'ddpm':
|
|
modules.append(Downsample(in_ch=in_ch))
|
|
else:
|
|
modules.append(ResnetBlock(down=True, in_ch=in_ch))
|
|
|
|
if progressive_input == 'input_skip':
|
|
modules.append(combiner(dim1=input_pyramid_ch, dim2=in_ch))
|
|
if combine_method == 'cat':
|
|
in_ch *= 2
|
|
|
|
elif progressive_input == 'residual':
|
|
modules.append(pyramid_downsample(in_ch=input_pyramid_ch, out_ch=in_ch))
|
|
input_pyramid_ch = in_ch
|
|
|
|
hs_c.append(in_ch)
|
|
|
|
in_ch = hs_c[-1]
|
|
modules.append(ResnetBlock(in_ch=in_ch))
|
|
modules.append(AttnBlock(channels=in_ch))
|
|
modules.append(ResnetBlock(in_ch=in_ch))
|
|
|
|
pyramid_ch = 0
|
|
|
|
for i_level in reversed(range(num_resolutions)):
|
|
for i_block in range(num_res_blocks + 1):
|
|
out_ch = nf * ch_mult[i_level]
|
|
modules.append(ResnetBlock(in_ch=in_ch + hs_c.pop(), out_ch=out_ch))
|
|
in_ch = out_ch
|
|
|
|
if all_resolutions[i_level] in attn_resolutions:
|
|
modules.append(AttnBlock(channels=in_ch))
|
|
|
|
if progressive != 'none':
|
|
if i_level == num_resolutions - 1:
|
|
if progressive == 'output_skip':
|
|
modules.append(nn.GroupNorm(num_groups=min(in_ch // 4, 32),
|
|
num_channels=in_ch, eps=1e-6))
|
|
modules.append(conv3x3(in_ch, channels, init_scale=init_scale))
|
|
pyramid_ch = channels
|
|
elif progressive == 'residual':
|
|
modules.append(nn.GroupNorm(num_groups=min(in_ch // 4, 32), num_channels=in_ch, eps=1e-6))
|
|
modules.append(conv3x3(in_ch, in_ch, bias=True))
|
|
pyramid_ch = in_ch
|
|
else:
|
|
raise ValueError(f'{progressive} is not a valid name.')
|
|
else:
|
|
if progressive == 'output_skip':
|
|
modules.append(nn.GroupNorm(num_groups=min(in_ch // 4, 32),
|
|
num_channels=in_ch, eps=1e-6))
|
|
modules.append(conv3x3(in_ch, channels, bias=True, init_scale=init_scale))
|
|
pyramid_ch = channels
|
|
elif progressive == 'residual':
|
|
modules.append(pyramid_upsample(in_ch=pyramid_ch, out_ch=in_ch))
|
|
pyramid_ch = in_ch
|
|
else:
|
|
raise ValueError(f'{progressive} is not a valid name')
|
|
|
|
if i_level != 0:
|
|
if resblock_type == 'ddpm':
|
|
modules.append(Upsample(in_ch=in_ch))
|
|
else:
|
|
modules.append(ResnetBlock(in_ch=in_ch, up=True))
|
|
|
|
assert not hs_c
|
|
|
|
if progressive != 'output_skip':
|
|
modules.append(nn.GroupNorm(num_groups=min(in_ch // 4, 32), num_channels=in_ch, eps=1e-6))
|
|
modules.append(conv3x3(in_ch, channels, init_scale=init_scale))
|
|
|
|
self.all_modules = nn.ModuleList(modules)
|
|
|
|
|
|
def forward(self, x, y, t):
|
|
|
|
modules = self.all_modules
|
|
m_idx = 0
|
|
|
|
|
|
x = torch.cat((x.real, x.imag, y.real, y.imag), dim=1)
|
|
|
|
if self.embedding_type == 'fourier':
|
|
|
|
used_sigmas = t
|
|
temb = modules[m_idx](torch.log(used_sigmas))
|
|
m_idx += 1
|
|
|
|
elif self.embedding_type == 'positional':
|
|
|
|
timesteps = t
|
|
used_sigmas = self.sigmas[t.long()]
|
|
temb = layers.get_timestep_embedding(timesteps, self.nf)
|
|
|
|
else:
|
|
raise ValueError(f'embedding type {self.embedding_type} unknown.')
|
|
|
|
temb = modules[m_idx](temb)
|
|
m_idx += 1
|
|
temb = modules[m_idx](self.act(temb))
|
|
m_idx += 1
|
|
|
|
|
|
input_pyramid = None
|
|
if self.progressive_input != 'none':
|
|
input_pyramid = x
|
|
|
|
|
|
hs = [modules[m_idx](x)]
|
|
m_idx += 1
|
|
|
|
|
|
for i_level in range(self.num_resolutions):
|
|
|
|
for i_block in range(self.num_res_blocks):
|
|
h = modules[m_idx](hs[-1], temb)
|
|
m_idx += 1
|
|
|
|
if h.shape[-2] in self.attn_resolutions:
|
|
h = modules[m_idx](h)
|
|
m_idx += 1
|
|
hs.append(h)
|
|
|
|
|
|
if i_level != self.num_resolutions - 1:
|
|
if self.resblock_type == 'ddpm':
|
|
h = modules[m_idx](hs[-1])
|
|
m_idx += 1
|
|
else:
|
|
h = modules[m_idx](hs[-1], temb)
|
|
m_idx += 1
|
|
|
|
if self.progressive_input == 'input_skip':
|
|
input_pyramid = self.pyramid_downsample(input_pyramid)
|
|
h = modules[m_idx](input_pyramid, h)
|
|
m_idx += 1
|
|
|
|
elif self.progressive_input == 'residual':
|
|
input_pyramid = modules[m_idx](input_pyramid)
|
|
m_idx += 1
|
|
if self.skip_rescale:
|
|
input_pyramid = (input_pyramid + h) / np.sqrt(2.)
|
|
else:
|
|
input_pyramid = input_pyramid + h
|
|
h = input_pyramid
|
|
hs.append(h)
|
|
|
|
h = hs[-1]
|
|
h = modules[m_idx](h, temb)
|
|
m_idx += 1
|
|
h = modules[m_idx](h)
|
|
m_idx += 1
|
|
h = modules[m_idx](h, temb)
|
|
m_idx += 1
|
|
|
|
pyramid = None
|
|
|
|
|
|
for i_level in reversed(range(self.num_resolutions)):
|
|
for i_block in range(self.num_res_blocks + 1):
|
|
h = modules[m_idx](torch.cat([h, hs.pop()], dim=1), temb)
|
|
m_idx += 1
|
|
|
|
|
|
if h.shape[-2] in self.attn_resolutions:
|
|
h = modules[m_idx](h)
|
|
m_idx += 1
|
|
|
|
if self.progressive != 'none':
|
|
if i_level == self.num_resolutions - 1:
|
|
if self.progressive == 'output_skip':
|
|
pyramid = self.act(modules[m_idx](h))
|
|
m_idx += 1
|
|
pyramid = modules[m_idx](pyramid)
|
|
m_idx += 1
|
|
elif self.progressive == 'residual':
|
|
pyramid = self.act(modules[m_idx](h))
|
|
m_idx += 1
|
|
pyramid = modules[m_idx](pyramid)
|
|
m_idx += 1
|
|
else:
|
|
raise ValueError(f'{self.progressive} is not a valid name.')
|
|
else:
|
|
if self.progressive == 'output_skip':
|
|
pyramid = self.pyramid_upsample(pyramid)
|
|
pyramid_h = self.act(modules[m_idx](h))
|
|
m_idx += 1
|
|
pyramid_h = modules[m_idx](pyramid_h)
|
|
m_idx += 1
|
|
pyramid = pyramid + pyramid_h
|
|
elif self.progressive == 'residual':
|
|
pyramid = modules[m_idx](pyramid)
|
|
m_idx += 1
|
|
if self.skip_rescale:
|
|
pyramid = (pyramid + h) / np.sqrt(2.)
|
|
else:
|
|
pyramid = pyramid + h
|
|
h = pyramid
|
|
else:
|
|
raise ValueError(f'{self.progressive} is not a valid name')
|
|
|
|
|
|
if i_level != 0:
|
|
if self.resblock_type == 'ddpm':
|
|
h = modules[m_idx](h)
|
|
m_idx += 1
|
|
else:
|
|
h = modules[m_idx](h, temb)
|
|
m_idx += 1
|
|
|
|
assert not hs
|
|
|
|
if self.progressive == 'output_skip':
|
|
h = pyramid
|
|
else:
|
|
h = self.act(modules[m_idx](h))
|
|
m_idx += 1
|
|
h = modules[m_idx](h)
|
|
m_idx += 1
|
|
|
|
assert m_idx == len(modules), "Implementation error"
|
|
|
|
h = self.output_layer(h)
|
|
h = torch.permute(h, (0, 2, 3, 1)).contiguous()
|
|
|
|
|
|
h = torch.view_as_complex(h)[:,None, :, :]
|
|
|
|
return h
|
|
|