|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Normalization layers."""
|
|
import torch.nn as nn
|
|
import torch
|
|
import functools
|
|
|
|
|
|
def get_normalization(config, conditional=False):
|
|
"""Obtain normalization modules from the config file."""
|
|
norm = config.model.normalization
|
|
if conditional:
|
|
if norm == 'InstanceNorm++':
|
|
return functools.partial(ConditionalInstanceNorm2dPlus, num_classes=config.model.num_classes)
|
|
else:
|
|
raise NotImplementedError(f'{norm} not implemented yet.')
|
|
else:
|
|
if norm == 'InstanceNorm':
|
|
return nn.InstanceNorm2d
|
|
elif norm == 'InstanceNorm++':
|
|
return InstanceNorm2dPlus
|
|
elif norm == 'VarianceNorm':
|
|
return VarianceNorm2d
|
|
elif norm == 'GroupNorm':
|
|
return nn.GroupNorm
|
|
else:
|
|
raise ValueError('Unknown normalization: %s' % norm)
|
|
|
|
|
|
class ConditionalBatchNorm2d(nn.Module):
|
|
def __init__(self, num_features, num_classes, bias=True):
|
|
super().__init__()
|
|
self.num_features = num_features
|
|
self.bias = bias
|
|
self.bn = nn.BatchNorm2d(num_features, affine=False)
|
|
if self.bias:
|
|
self.embed = nn.Embedding(num_classes, num_features * 2)
|
|
self.embed.weight.data[:, :num_features].uniform_()
|
|
self.embed.weight.data[:, num_features:].zero_()
|
|
else:
|
|
self.embed = nn.Embedding(num_classes, num_features)
|
|
self.embed.weight.data.uniform_()
|
|
|
|
def forward(self, x, y):
|
|
out = self.bn(x)
|
|
if self.bias:
|
|
gamma, beta = self.embed(y).chunk(2, dim=1)
|
|
out = gamma.view(-1, self.num_features, 1, 1) * out + beta.view(-1, self.num_features, 1, 1)
|
|
else:
|
|
gamma = self.embed(y)
|
|
out = gamma.view(-1, self.num_features, 1, 1) * out
|
|
return out
|
|
|
|
|
|
class ConditionalInstanceNorm2d(nn.Module):
|
|
def __init__(self, num_features, num_classes, bias=True):
|
|
super().__init__()
|
|
self.num_features = num_features
|
|
self.bias = bias
|
|
self.instance_norm = nn.InstanceNorm2d(num_features, affine=False, track_running_stats=False)
|
|
if bias:
|
|
self.embed = nn.Embedding(num_classes, num_features * 2)
|
|
self.embed.weight.data[:, :num_features].uniform_()
|
|
self.embed.weight.data[:, num_features:].zero_()
|
|
else:
|
|
self.embed = nn.Embedding(num_classes, num_features)
|
|
self.embed.weight.data.uniform_()
|
|
|
|
def forward(self, x, y):
|
|
h = self.instance_norm(x)
|
|
if self.bias:
|
|
gamma, beta = self.embed(y).chunk(2, dim=-1)
|
|
out = gamma.view(-1, self.num_features, 1, 1) * h + beta.view(-1, self.num_features, 1, 1)
|
|
else:
|
|
gamma = self.embed(y)
|
|
out = gamma.view(-1, self.num_features, 1, 1) * h
|
|
return out
|
|
|
|
|
|
class ConditionalVarianceNorm2d(nn.Module):
|
|
def __init__(self, num_features, num_classes, bias=False):
|
|
super().__init__()
|
|
self.num_features = num_features
|
|
self.bias = bias
|
|
self.embed = nn.Embedding(num_classes, num_features)
|
|
self.embed.weight.data.normal_(1, 0.02)
|
|
|
|
def forward(self, x, y):
|
|
vars = torch.var(x, dim=(2, 3), keepdim=True)
|
|
h = x / torch.sqrt(vars + 1e-5)
|
|
|
|
gamma = self.embed(y)
|
|
out = gamma.view(-1, self.num_features, 1, 1) * h
|
|
return out
|
|
|
|
|
|
class VarianceNorm2d(nn.Module):
|
|
def __init__(self, num_features, bias=False):
|
|
super().__init__()
|
|
self.num_features = num_features
|
|
self.bias = bias
|
|
self.alpha = nn.Parameter(torch.zeros(num_features))
|
|
self.alpha.data.normal_(1, 0.02)
|
|
|
|
def forward(self, x):
|
|
vars = torch.var(x, dim=(2, 3), keepdim=True)
|
|
h = x / torch.sqrt(vars + 1e-5)
|
|
|
|
out = self.alpha.view(-1, self.num_features, 1, 1) * h
|
|
return out
|
|
|
|
|
|
class ConditionalNoneNorm2d(nn.Module):
|
|
def __init__(self, num_features, num_classes, bias=True):
|
|
super().__init__()
|
|
self.num_features = num_features
|
|
self.bias = bias
|
|
if bias:
|
|
self.embed = nn.Embedding(num_classes, num_features * 2)
|
|
self.embed.weight.data[:, :num_features].uniform_()
|
|
self.embed.weight.data[:, num_features:].zero_()
|
|
else:
|
|
self.embed = nn.Embedding(num_classes, num_features)
|
|
self.embed.weight.data.uniform_()
|
|
|
|
def forward(self, x, y):
|
|
if self.bias:
|
|
gamma, beta = self.embed(y).chunk(2, dim=-1)
|
|
out = gamma.view(-1, self.num_features, 1, 1) * x + beta.view(-1, self.num_features, 1, 1)
|
|
else:
|
|
gamma = self.embed(y)
|
|
out = gamma.view(-1, self.num_features, 1, 1) * x
|
|
return out
|
|
|
|
|
|
class NoneNorm2d(nn.Module):
|
|
def __init__(self, num_features, bias=True):
|
|
super().__init__()
|
|
|
|
def forward(self, x):
|
|
return x
|
|
|
|
|
|
class InstanceNorm2dPlus(nn.Module):
|
|
def __init__(self, num_features, bias=True):
|
|
super().__init__()
|
|
self.num_features = num_features
|
|
self.bias = bias
|
|
self.instance_norm = nn.InstanceNorm2d(num_features, affine=False, track_running_stats=False)
|
|
self.alpha = nn.Parameter(torch.zeros(num_features))
|
|
self.gamma = nn.Parameter(torch.zeros(num_features))
|
|
self.alpha.data.normal_(1, 0.02)
|
|
self.gamma.data.normal_(1, 0.02)
|
|
if bias:
|
|
self.beta = nn.Parameter(torch.zeros(num_features))
|
|
|
|
def forward(self, x):
|
|
means = torch.mean(x, dim=(2, 3))
|
|
m = torch.mean(means, dim=-1, keepdim=True)
|
|
v = torch.var(means, dim=-1, keepdim=True)
|
|
means = (means - m) / (torch.sqrt(v + 1e-5))
|
|
h = self.instance_norm(x)
|
|
|
|
if self.bias:
|
|
h = h + means[..., None, None] * self.alpha[..., None, None]
|
|
out = self.gamma.view(-1, self.num_features, 1, 1) * h + self.beta.view(-1, self.num_features, 1, 1)
|
|
else:
|
|
h = h + means[..., None, None] * self.alpha[..., None, None]
|
|
out = self.gamma.view(-1, self.num_features, 1, 1) * h
|
|
return out
|
|
|
|
|
|
class ConditionalInstanceNorm2dPlus(nn.Module):
|
|
def __init__(self, num_features, num_classes, bias=True):
|
|
super().__init__()
|
|
self.num_features = num_features
|
|
self.bias = bias
|
|
self.instance_norm = nn.InstanceNorm2d(num_features, affine=False, track_running_stats=False)
|
|
if bias:
|
|
self.embed = nn.Embedding(num_classes, num_features * 3)
|
|
self.embed.weight.data[:, :2 * num_features].normal_(1, 0.02)
|
|
self.embed.weight.data[:, 2 * num_features:].zero_()
|
|
else:
|
|
self.embed = nn.Embedding(num_classes, 2 * num_features)
|
|
self.embed.weight.data.normal_(1, 0.02)
|
|
|
|
def forward(self, x, y):
|
|
means = torch.mean(x, dim=(2, 3))
|
|
m = torch.mean(means, dim=-1, keepdim=True)
|
|
v = torch.var(means, dim=-1, keepdim=True)
|
|
means = (means - m) / (torch.sqrt(v + 1e-5))
|
|
h = self.instance_norm(x)
|
|
|
|
if self.bias:
|
|
gamma, alpha, beta = self.embed(y).chunk(3, dim=-1)
|
|
h = h + means[..., None, None] * alpha[..., None, None]
|
|
out = gamma.view(-1, self.num_features, 1, 1) * h + beta.view(-1, self.num_features, 1, 1)
|
|
else:
|
|
gamma, alpha = self.embed(y).chunk(2, dim=-1)
|
|
h = h + means[..., None, None] * alpha[..., None, None]
|
|
out = gamma.view(-1, self.num_features, 1, 1) * h
|
|
return out
|
|
|