import time from math import ceil import warnings import torch import pytorch_lightning as pl import torch.distributed as dist from torchaudio import load from torch_ema import ExponentialMovingAverage from librosa import resample from sgmse import sampling from sgmse.sdes import SDERegistry from sgmse.backbones import BackboneRegistry from sgmse.util.inference import evaluate_model from sgmse.util.other import pad_spec, si_sdr from pesq import pesq from pystoi import stoi from torch_pesq import PesqLoss class ScoreModel(pl.LightningModule): @staticmethod def add_argparse_args(parser): parser.add_argument("--lr", type=float, default=1e-4, help="The learning rate (1e-4 by default)") parser.add_argument("--ema_decay", type=float, default=0.999, help="The parameter EMA decay constant (0.999 by default)") parser.add_argument("--t_eps", type=float, default=0.03, help="The minimum process time (0.03 by default)") parser.add_argument("--num_eval_files", type=int, default=20, help="Number of files for speech enhancement performance evaluation during training. Pass 0 to turn off (no checkpoints based on evaluation metrics will be generated).") parser.add_argument("--loss_type", type=str, default="score_matching", help="The type of loss function to use.") parser.add_argument("--loss_weighting", type=str, default="sigma^2", help="The weighting of the loss function.") parser.add_argument("--network_scaling", type=str, default=None, help="The type of loss scaling to use.") parser.add_argument("--c_in", type=str, default="1", help="The input scaling for x.") parser.add_argument("--c_out", type=str, default="1", help="The output scaling.") parser.add_argument("--c_skip", type=str, default="0", help="The skip connection scaling.") parser.add_argument("--sigma_data", type=float, default=0.1, help="The data standard deviation.") parser.add_argument("--l1_weight", type=float, default=0.001, help="The balance between the time-frequency and time-domain losses.") parser.add_argument("--pesq_weight", type=float, default=0.0, help="The balance between the time-frequency and time-domain losses.") parser.add_argument("--sr", type=int, default=16000, help="The sample rate of the audio files.") return parser def __init__( self, backbone, sde, lr=1e-4, ema_decay=0.999, t_eps=0.03, num_eval_files=20, loss_type='score_matching', loss_weighting='sigma^2', network_scaling=None, c_in='1', c_out='1', c_skip='0', sigma_data=0.1, l1_weight=0.001, pesq_weight=0.0, sr=16000, data_module_cls=None, **kwargs ): """ Create a new ScoreModel. Args: backbone: Backbone DNN that serves as a score-based model. sde: The SDE that defines the diffusion process. lr: The learning rate of the optimizer. (1e-4 by default). ema_decay: The decay constant of the parameter EMA (0.999 by default). t_eps: The minimum time to practically run for to avoid issues very close to zero (1e-5 by default). loss_type: The type of loss to use (wrt. noise z/std). Options are 'mse' (default), 'mae' """ super().__init__() # Initialize Backbone DNN self.backbone = backbone dnn_cls = BackboneRegistry.get_by_name(backbone) self.dnn = dnn_cls(**kwargs) # Initialize SDE sde_cls = SDERegistry.get_by_name(sde) self.sde = sde_cls(**kwargs) # Store hyperparams and save them self.lr = lr self.ema_decay = ema_decay self.ema = ExponentialMovingAverage(self.parameters(), decay=self.ema_decay) self._error_loading_ema = False self.t_eps = t_eps self.loss_type = loss_type self.loss_weighting = loss_weighting self.l1_weight = l1_weight self.pesq_weight = pesq_weight self.network_scaling = network_scaling self.c_in = c_in self.c_out = c_out self.c_skip = c_skip self.sigma_data = sigma_data self.num_eval_files = num_eval_files self.sr = sr # Initialize PESQ loss if pesq_weight > 0.0 if pesq_weight > 0.0: self.pesq_loss = PesqLoss(1.0, sample_rate=sr).eval() for param in self.pesq_loss.parameters(): param.requires_grad = False self.save_hyperparameters(ignore=['no_wandb']) self.data_module = data_module_cls(**kwargs, gpu=kwargs.get('gpus', 0) > 0) def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), lr=self.lr) return optimizer def optimizer_step(self, *args, **kwargs): # Method overridden so that the EMA params are updated after each optimizer step super().optimizer_step(*args, **kwargs) self.ema.update(self.dnn.parameters()) # on_load_checkpoint / on_save_checkpoint needed for EMA storing/loading def on_load_checkpoint(self, checkpoint): ema = checkpoint.get('ema', None) if ema is not None: self.ema.load_state_dict(checkpoint['ema']) else: self._error_loading_ema = True warnings.warn("EMA state_dict not found in checkpoint!") def on_save_checkpoint(self, checkpoint): checkpoint['ema'] = self.ema.state_dict() def train(self, mode, no_ema=False): res = super().train(mode) # call the standard `train` method with the given mode if not self._error_loading_ema: if mode == False and not no_ema: # eval self.ema.store(self.dnn.parameters()) # store current params in EMA self.ema.copy_to(self.dnn.parameters()) # copy EMA parameters over current params for evaluation else: # train if self.ema.collected_params is not None: self.ema.restore(self.dnn.parameters()) # restore the EMA weights (if stored) return res def eval(self, no_ema=False): return self.train(False, no_ema=no_ema) def _loss(self, forward_out, x_t, z, t, mean, x): """ Different loss functions can be used to train the score model, see the paper: Julius Richter, Danilo de Oliveira, and Timo Gerkmann "Investigating Training Objectives for Generative Speech Enhancement" https://arxiv.org/abs/2409.10753 """ sigma = self.sde._std(t)[:, None, None, None] if self.loss_type == "score_matching": score = forward_out if self.loss_weighting == "sigma^2": losses = torch.square(torch.abs(score * sigma + z)) # Eq. (7) else: raise ValueError("Invalid loss weighting for loss_type=score_matching: {}".format(self.loss_weighting)) # Sum over spatial dimensions and channels and mean over batch loss = torch.mean(0.5*torch.sum(losses.reshape(losses.shape[0], -1), dim=-1)) elif self.loss_type == "denoiser": score = forward_out D = score * sigma.pow(2) + x_t # equivalent to Eq. (10) losses = torch.square(torch.abs(D - mean)) # Eq. (8) if self.loss_weighting == "1": losses = losses elif self.loss_weighting == "sigma^2": losses = losses * sigma**2 elif self.loss_weighting == "edm": losses = ((sigma**2 + self.sigma_data**2)/((sigma*self.sigma_data)**2))[:, None, None, None] * losses else: raise ValueError("Invalid loss weighting for loss_type=denoiser: {}".format(self.loss_weighting)) # Sum over spatial dimensions and channels and mean over batch loss = torch.mean(0.5*torch.sum(losses.reshape(losses.shape[0], -1), dim=-1)) elif self.loss_type == "data_prediction": x_hat = forward_out B, C, F, T = x.shape # losses in the time-frequency domain (tf) losses_tf = (1/(F*T))*torch.square(torch.abs(x_hat - x)) losses_tf = torch.mean(0.5*torch.sum(losses_tf.reshape(losses_tf.shape[0], -1), dim=-1)) # losses in the time domain (td) target_len = (self.data_module.num_frames - 1) * self.data_module.hop_length x_hat_td = self.to_audio(x_hat.squeeze(), target_len) x_td = self.to_audio(x.squeeze(), target_len) losses_l1 = (1 / target_len) * torch.abs(x_hat_td - x_td) losses_l1 = torch.mean(0.5*torch.sum(losses_l1.reshape(losses_l1.shape[0], -1), dim=-1)) # losses using PESQ if self.pesq_weight > 0.0: losses_pesq = self.pesq_loss(x_td, x_hat_td) losses_pesq = torch.mean(losses_pesq) # combine the losses loss = losses_tf + self.l1_weight * losses_l1 + self.pesq_weight * losses_pesq else: loss = losses_tf + self.l1_weight * losses_l1 else: raise ValueError("Invalid loss type: {}".format(self.loss_type)) return loss def _step(self, batch, batch_idx): x, y = batch t = torch.rand(x.shape[0], device=x.device) * (self.sde.T - self.t_eps) + self.t_eps mean, std = self.sde.marginal_prob(x, y, t) z = torch.randn_like(x) # i.i.d. normal distributed with var=0.5 sigma = std[:, None, None, None] x_t = mean + sigma * z forward_out = self(x_t, y, t) loss = self._loss(forward_out, x_t, z, t, mean, x) return loss def training_step(self, batch, batch_idx): loss = self._step(batch, batch_idx) self.log('train_loss', loss, on_step=True, on_epoch=True, sync_dist=True, prog_bar=True) return loss def validation_step(self, batch, batch_idx): # Evaluate speech enhancement performance if batch_idx == 0 and self.num_eval_files != 0: rank = dist.get_rank() world_size = dist.get_world_size() # Split the evaluation files among the GPUs eval_files_per_gpu = self.num_eval_files // world_size clean_files = self.data_module.valid_set.clean_files[:self.num_eval_files] noisy_files = self.data_module.valid_set.noisy_files[:self.num_eval_files] # Select the files for this GPU if rank == world_size - 1: clean_files = clean_files[rank*eval_files_per_gpu:] noisy_files = noisy_files[rank*eval_files_per_gpu:] else: clean_files = clean_files[rank*eval_files_per_gpu:(rank+1)*eval_files_per_gpu] noisy_files = noisy_files[rank*eval_files_per_gpu:(rank+1)*eval_files_per_gpu] # Evaluate the performance of the model pesq_sum = 0; si_sdr_sum = 0; estoi_sum = 0; for (clean_file, noisy_file) in zip(clean_files, noisy_files): # Load the clean and noisy speech x, sr_x = load(clean_file) x = x.squeeze().numpy() y, sr_y = load(noisy_file) assert sr_x == sr_y, "Sample rates of clean and noisy files do not match!" # Resample if necessary if sr_x != 16000: x_16k = resample(x, orig_sr=sr_x, target_sr=16000).squeeze() else: x_16k = x # Enhance the noisy speech x_hat = self.enhance(y, N=self.sde.N) if self.sr != 16000: x_hat_16k = resample(x_hat, orig_sr=self.sr, target_sr=16000).squeeze() else: x_hat_16k = x_hat pesq_sum += pesq(16000, x_16k, x_hat_16k, 'wb') si_sdr_sum += si_sdr(x, x_hat) estoi_sum += stoi(x, x_hat, self.sr, extended=True) pesq_avg = pesq_sum / len(clean_files) si_sdr_avg = si_sdr_sum / len(clean_files) estoi_avg = estoi_sum / len(clean_files) self.log('pesq', pesq_avg, on_step=False, on_epoch=True, sync_dist=True) self.log('si_sdr', si_sdr_avg, on_step=False, on_epoch=True, sync_dist=True) self.log('estoi', estoi_avg, on_step=False, on_epoch=True, sync_dist=True) loss = self._step(batch, batch_idx) self.log('valid_loss', loss, on_step=False, on_epoch=True, sync_dist=True) return loss def forward(self, x_t, y, t): """ The model forward pass. In [1] and [2], the model estimates the score function. In [3], the model estimates either the score function or the target data for the Schrödinger bridge (loss_type='data_prediction'). [1] Julius Richter, Simon Welker, Jean-Marie Lemercier, Bunlong Lay, and Timo Gerkmann "Speech Enhancement and Dereverberation with Diffusion-Based Generative Models" IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 31, pp. 2351-2364, 2023. [2] Julius Richter, Yi-Chiao Wu, Steven Krenn, Simon Welker, Bunlong Lay, Shinji Watanabe, Alexander Richard, and Timo Gerkmann "EARS: An Anechoic Fullband Speech Dataset Benchmarked for Speech Enhancement and Dereverberation" ISCA Interspecch, Kos, Greece, Sept. 2024. [3] Julius Richter, Danilo de Oliveira, and Timo Gerkmann "Investigating Training Objectives for Generative Speech Enhancement" https://arxiv.org/abs/2409.10753 """ # In [3], we use new code with backbone='ncsnpp_v2': if self.backbone == "ncsnpp_v2": F = self.dnn(self._c_in(t) * x_t, self._c_in(t) * y, t) # Scaling the network output, see below Eq. (7) in the paper if self.network_scaling == "1/sigma": std = self.sde._std(t) F = F / std[:, None, None, None] elif self.network_scaling == "1/t": F = F / t[:, None, None, None] # The loss type determines the output of the model if self.loss_type == "score_matching": score = self._c_skip(t) * x_t + self._c_out(t) * F return score elif self.loss_type == "denoiser": sigmas = self.sde._std(t)[:, None, None, None] score = (F - x_t) / sigmas.pow(2) return score elif self.loss_type == 'data_prediction': x_hat = self._c_skip(t) * x_t + self._c_out(t) * F return x_hat # In [1] and [2], we use the old code: else: dnn_input = torch.cat([x_t, y], dim=1) score = -self.dnn(dnn_input, t) return score def _c_in(self, t): if self.c_in == "1": return 1.0 elif self.c_in == "edm": sigma = self.sde._std(t) return (1.0 / torch.sqrt(sigma**2 + self.sigma_data**2))[:, None, None, None] else: raise ValueError("Invalid c_in type: {}".format(self.c_in)) def _c_out(self, t): if self.c_out == "1": return 1.0 elif self.c_out == "sigma": return self.sde._std(t)[:, None, None, None] elif self.c_out == "1/sigma": return 1.0 / self.sde._std(t)[:, None, None, None] elif self.c_out == "edm": sigma = self.sde._std(t) return ((sigma * self.sigma_data) / torch.sqrt(self.sigma_data**2 + sigma**2))[:, None, None, None] else: raise ValueError("Invalid c_out type: {}".format(self.c_out)) def _c_skip(self, t): if self.c_skip == "0": return 0.0 elif self.c_skip == "edm": sigma = self.sde._std(t) return (self.sigma_data**2 / (sigma**2 + self.sigma_data**2))[:, None, None, None] else: raise ValueError("Invalid c_skip type: {}".format(self.c_skip)) def to(self, *args, **kwargs): """Override PyTorch .to() to also transfer the EMA of the model weights""" self.ema.to(*args, **kwargs) return super().to(*args, **kwargs) def get_pc_sampler(self, predictor_name, corrector_name, y, N=None, minibatch=None, **kwargs): N = self.sde.N if N is None else N sde = self.sde.copy() sde.N = N kwargs = {"eps": self.t_eps, **kwargs} if minibatch is None: return sampling.get_pc_sampler(predictor_name, corrector_name, sde=sde, score_fn=self, y=y, **kwargs) else: M = y.shape[0] def batched_sampling_fn(): samples, ns = [], [] for i in range(int(ceil(M / minibatch))): y_mini = y[i*minibatch:(i+1)*minibatch] sampler = sampling.get_pc_sampler(predictor_name, corrector_name, sde=sde, score_fn=self, y=y_mini, **kwargs) sample, n = sampler() samples.append(sample) ns.append(n) samples = torch.cat(samples, dim=0) return samples, ns return batched_sampling_fn def get_ode_sampler(self, y, N=None, minibatch=None, **kwargs): N = self.sde.N if N is None else N sde = self.sde.copy() sde.N = N kwargs = {"eps": self.t_eps, **kwargs} if minibatch is None: return sampling.get_ode_sampler(sde, self, y=y, **kwargs) else: M = y.shape[0] def batched_sampling_fn(): samples, ns = [], [] for i in range(int(ceil(M / minibatch))): y_mini = y[i*minibatch:(i+1)*minibatch] sampler = sampling.get_ode_sampler(sde, self, y=y_mini, **kwargs) sample, n = sampler() samples.append(sample) ns.append(n) samples = torch.cat(samples, dim=0) return sample, ns return batched_sampling_fn def get_sb_sampler(self, sde, y, sampler_type="ode", N=None, **kwargs): N = sde.N if N is None else N sde = self.sde.copy() sde.N = N if N is not None else sde.N return sampling.get_sb_sampler(sde, self, y=y, sampler_type=sampler_type, **kwargs) def train_dataloader(self): return self.data_module.train_dataloader() def val_dataloader(self): return self.data_module.val_dataloader() def test_dataloader(self): return self.data_module.test_dataloader() def setup(self, stage=None): return self.data_module.setup(stage=stage) def to_audio(self, spec, length=None): return self._istft(self._backward_transform(spec), length) def _forward_transform(self, spec): return self.data_module.spec_fwd(spec) def _backward_transform(self, spec): return self.data_module.spec_back(spec) def _stft(self, sig): return self.data_module.stft(sig) def _istft(self, spec, length=None): return self.data_module.istft(spec, length) def enhance(self, y, sampler_type="pc", predictor="reverse_diffusion", corrector="ald", N=30, corrector_steps=1, snr=0.5, timeit=False, **kwargs ): """ One-call speech enhancement of noisy speech `y`, for convenience. """ start = time.time() T_orig = y.size(1) norm_factor = y.abs().max().item() y = y / norm_factor Y = torch.unsqueeze(self._forward_transform(self._stft(y.cuda())), 0) Y = pad_spec(Y) # SGMSE sampling with OUVE SDE if self.sde.__class__.__name__ == 'OUVESDE': if self.sde.sampler_type == "pc": sampler = self.get_pc_sampler(predictor, corrector, Y.cuda(), N=N, corrector_steps=corrector_steps, snr=snr, intermediate=False, **kwargs) elif self.sde.sampler_type == "ode": sampler = self.get_ode_sampler(Y.cuda(), N=N, **kwargs) else: raise ValueError("Invalid sampler type for SGMSE sampling: {}".format(sampler_type)) # Schrödinger bridge sampling with VE SDE elif self.sde.__class__.__name__ == 'SBVESDE': sampler = self.get_sb_sampler(sde=self.sde, y=Y.cuda(), sampler_type=self.sde.sampler_type) else: raise ValueError("Invalid SDE type for speech enhancement: {}".format(self.sde.__class__.__name__)) sample, nfe = sampler() x_hat = self.to_audio(sample.squeeze(), T_orig) x_hat = x_hat * norm_factor x_hat = x_hat.squeeze().cpu().numpy() end = time.time() if timeit: rtf = (end-start)/(len(x_hat)/self.sr) return x_hat, nfe, rtf else: return x_hat