#Reduced version of file https://github.com/HSE-asavchenko/HSE_FaceRec_tf/blob/master/age_gender_identity/facial_analysis.py from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys import os #os.environ['CUDA_VISIBLE_DEVICES'] = '' import argparse import tensorflow as tf import numpy as np import cv2 import time import subprocess, re def is_specialfile(path,exts): _, file_extension = os.path.splitext(path) return file_extension.lower() in exts img_extensions=['.jpg','.jpeg','.png'] def is_image(path): return is_specialfile(path,img_extensions) video_extensions=['.mov','.avi'] def is_video(path): return is_specialfile(path,video_extensions) class FacialImageProcessing: # minsize: minimum of faces' size def __init__(self, print_stat=False, minsize = 32): self.print_stat=print_stat self.minsize=minsize models_path,_ = os.path.split(os.path.realpath(__file__)) models_path=os.path.join(models_path,'models','face_detection') model_files={os.path.join(models_path,'mtcnn.pb'):''} with tf.Graph().as_default() as full_graph: for model_file in model_files: tf.import_graph_def(FacialImageProcessing.load_graph_def(model_file), name=model_files[model_file]) self.sess=tf.compat.v1.Session(graph=full_graph)#,config=tf.ConfigProto(device_count={'CPU':1,'GPU':0})) self.pnet, self.rnet, self.onet = FacialImageProcessing.load_mtcnn(self.sess,full_graph) def close(self): self.sess.close() @staticmethod def load_graph_def(frozen_graph_filename): graph_def=None with tf.io.gfile.GFile(frozen_graph_filename, 'rb') as f: graph_def = tf.compat.v1.GraphDef() graph_def.ParseFromString(f.read()) return graph_def @staticmethod def load_graph(frozen_graph_filename, prefix=''): graph_def = FacialImageProcessing.load_graph_def(frozen_graph_filename) with tf.Graph().as_default() as graph: tf.import_graph_def(graph_def, name=prefix) return graph @staticmethod def load_mtcnn(sess,graph): pnet_out_1=graph.get_tensor_by_name('pnet/conv4-2/BiasAdd:0') pnet_out_2=graph.get_tensor_by_name('pnet/prob1:0') pnet_in=graph.get_tensor_by_name('pnet/input:0') rnet_out_1=graph.get_tensor_by_name('rnet/conv5-2/conv5-2:0') rnet_out_2=graph.get_tensor_by_name('rnet/prob1:0') rnet_in=graph.get_tensor_by_name('rnet/input:0') onet_out_1=graph.get_tensor_by_name('onet/conv6-2/conv6-2:0') onet_out_2=graph.get_tensor_by_name('onet/conv6-3/conv6-3:0') onet_out_3=graph.get_tensor_by_name('onet/prob1:0') onet_in=graph.get_tensor_by_name('onet/input:0') pnet_fun = lambda img : sess.run((pnet_out_1, pnet_out_2), feed_dict={pnet_in:img}) rnet_fun = lambda img : sess.run((rnet_out_1, rnet_out_2), feed_dict={rnet_in:img}) onet_fun = lambda img : sess.run((onet_out_1, onet_out_2, onet_out_3), feed_dict={onet_in:img}) return pnet_fun, rnet_fun, onet_fun @staticmethod def bbreg(boundingbox,reg): # calibrate bounding boxes if reg.shape[1]==1: reg = np.reshape(reg, (reg.shape[2], reg.shape[3])) w = boundingbox[:,2]-boundingbox[:,0]+1 h = boundingbox[:,3]-boundingbox[:,1]+1 b1 = boundingbox[:,0]+reg[:,0]*w b2 = boundingbox[:,1]+reg[:,1]*h b3 = boundingbox[:,2]+reg[:,2]*w b4 = boundingbox[:,3]+reg[:,3]*h boundingbox[:,0:4] = np.transpose(np.vstack([b1, b2, b3, b4 ])) return boundingbox @staticmethod def generateBoundingBox(imap, reg, scale, t): # use heatmap to generate bounding boxes stride=2 cellsize=12 imap = np.transpose(imap) dx1 = np.transpose(reg[:,:,0]) dy1 = np.transpose(reg[:,:,1]) dx2 = np.transpose(reg[:,:,2]) dy2 = np.transpose(reg[:,:,3]) y, x = np.where(imap >= t) if y.shape[0]==1: dx1 = np.flipud(dx1) dy1 = np.flipud(dy1) dx2 = np.flipud(dx2) dy2 = np.flipud(dy2) score = imap[(y,x)] reg = np.transpose(np.vstack([ dx1[(y,x)], dy1[(y,x)], dx2[(y,x)], dy2[(y,x)] ])) if reg.size==0: reg = np.empty((0,3)) bb = np.transpose(np.vstack([y,x])) q1 = np.fix((stride*bb+1)/scale) q2 = np.fix((stride*bb+cellsize-1+1)/scale) boundingbox = np.hstack([q1, q2, np.expand_dims(score,1), reg]) return boundingbox, reg # function pick = nms(boxes,threshold,type) @staticmethod def nms(boxes, threshold, method): if boxes.size==0: return np.empty((0,3)) x1 = boxes[:,0] y1 = boxes[:,1] x2 = boxes[:,2] y2 = boxes[:,3] s = boxes[:,4] area = (x2-x1+1) * (y2-y1+1) I = np.argsort(s) pick = np.zeros_like(s, dtype=np.int16) counter = 0 while I.size>0: i = I[-1] pick[counter] = i counter += 1 idx = I[0:-1] xx1 = np.maximum(x1[i], x1[idx]) yy1 = np.maximum(y1[i], y1[idx]) xx2 = np.minimum(x2[i], x2[idx]) yy2 = np.minimum(y2[i], y2[idx]) w = np.maximum(0.0, xx2-xx1+1) h = np.maximum(0.0, yy2-yy1+1) inter = w * h if method == 'Min': o = inter / np.minimum(area[i], area[idx]) else: o = inter / (area[i] + area[idx] - inter) I = I[np.where(o<=threshold)] pick = pick[0:counter] return pick # function [dy edy dx edx y ey x ex tmpw tmph] = pad(total_boxes,w,h) @staticmethod def pad(total_boxes, w, h): # compute the padding coordinates (pad the bounding boxes to square) tmpw = (total_boxes[:,2]-total_boxes[:,0]+1).astype(np.int32) tmph = (total_boxes[:,3]-total_boxes[:,1]+1).astype(np.int32) numbox = total_boxes.shape[0] dx = np.ones((numbox), dtype=np.int32) dy = np.ones((numbox), dtype=np.int32) edx = tmpw.copy().astype(np.int32) edy = tmph.copy().astype(np.int32) x = total_boxes[:,0].copy().astype(np.int32) y = total_boxes[:,1].copy().astype(np.int32) ex = total_boxes[:,2].copy().astype(np.int32) ey = total_boxes[:,3].copy().astype(np.int32) tmp = np.where(ex>w) edx.flat[tmp] = np.expand_dims(-ex[tmp]+w+tmpw[tmp],1) ex[tmp] = w tmp = np.where(ey>h) edy.flat[tmp] = np.expand_dims(-ey[tmp]+h+tmph[tmp],1) ey[tmp] = h tmp = np.where(x<1) dx.flat[tmp] = np.expand_dims(2-x[tmp],1) x[tmp] = 1 tmp = np.where(y<1) dy.flat[tmp] = np.expand_dims(2-y[tmp],1) y[tmp] = 1 return dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph # function [bboxA] = rerec(bboxA) @staticmethod def rerec(bboxA): # convert bboxA to square h = bboxA[:,3]-bboxA[:,1] w = bboxA[:,2]-bboxA[:,0] l = np.maximum(w, h) bboxA[:,0] = bboxA[:,0]+w*0.5-l*0.5 bboxA[:,1] = bboxA[:,1]+h*0.5-l*0.5 bboxA[:,2:4] = bboxA[:,0:2] + np.transpose(np.tile(l,(2,1))) return bboxA def detect_faces(self,img): # im: input image # threshold: threshold=[th1 th2 th3], th1-3 are three steps's threshold threshold = [ 0.6, 0.7, 0.9 ] # three steps's threshold # fastresize: resize img from last scale (using in high-resolution images) if fastresize==true factor = 0.709 # scale factor factor_count=0 total_boxes=np.empty((0,9)) points=np.array([]) h=img.shape[0] w=img.shape[1] minl=np.amin([h, w]) m=12.0/self.minsize minl=minl*m # creat scale pyramid scales=[] while minl>=12: scales += [m*np.power(factor, factor_count)] minl = minl*factor factor_count += 1 # first stage #t=time.time() for j in range(len(scales)): scale=scales[j] hs=int(np.ceil(h*scale)) ws=int(np.ceil(w*scale)) im_data = cv2.resize(img, (ws,hs), interpolation=cv2.INTER_AREA) im_data = (im_data-127.5)*0.0078125 img_x = np.expand_dims(im_data, 0) img_y = np.transpose(img_x, (0,2,1,3)) out = self.pnet(img_y) out0 = np.transpose(out[0], (0,2,1,3)) out1 = np.transpose(out[1], (0,2,1,3)) boxes, _ = FacialImageProcessing.generateBoundingBox(out1[0,:,:,1].copy(), out0[0,:,:,:].copy(), scale, threshold[0]) # inter-scale nms pick = FacialImageProcessing.nms(boxes.copy(), 0.5, 'Union') if boxes.size>0 and pick.size>0: boxes = boxes[pick,:] total_boxes = np.append(total_boxes, boxes, axis=0) numbox = total_boxes.shape[0] #elapsed = time.time() - t #print('1 phase nb=%d elapsed=%f'%(numbox,elapsed)) if numbox>0: pick = FacialImageProcessing.nms(total_boxes.copy(), 0.7, 'Union') total_boxes = total_boxes[pick,:] regw = total_boxes[:,2]-total_boxes[:,0] regh = total_boxes[:,3]-total_boxes[:,1] qq1 = total_boxes[:,0]+total_boxes[:,5]*regw qq2 = total_boxes[:,1]+total_boxes[:,6]*regh qq3 = total_boxes[:,2]+total_boxes[:,7]*regw qq4 = total_boxes[:,3]+total_boxes[:,8]*regh total_boxes = np.transpose(np.vstack([qq1, qq2, qq3, qq4, total_boxes[:,4]])) total_boxes = FacialImageProcessing.rerec(total_boxes.copy()) total_boxes[:,0:4] = np.fix(total_boxes[:,0:4]).astype(np.int32) dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = FacialImageProcessing.pad(total_boxes.copy(), w, h) numbox = total_boxes.shape[0] #elapsed = time.time() - t #print('2 phase nb=%d elapsed=%f'%(numbox,elapsed)) if numbox>0: # second stage tempimg = np.zeros((24,24,3,numbox)) for k in range(0,numbox): tmp = np.zeros((int(tmph[k]),int(tmpw[k]),3)) tmp[dy[k]-1:edy[k],dx[k]-1:edx[k],:] = img[y[k]-1:ey[k],x[k]-1:ex[k],:] if tmp.shape[0]>0 and tmp.shape[1]>0 or tmp.shape[0]==0 and tmp.shape[1]==0: tempimg[:,:,:,k] = cv2.resize(tmp, (24,24), interpolation=cv2.INTER_AREA) else: return np.empty() tempimg = (tempimg-127.5)*0.0078125 tempimg1 = np.transpose(tempimg, (3,1,0,2)) out = self.rnet(tempimg1) out0 = np.transpose(out[0]) out1 = np.transpose(out[1]) score = out1[1,:] ipass = np.where(score>threshold[1]) total_boxes = np.hstack([total_boxes[ipass[0],0:4].copy(), np.expand_dims(score[ipass].copy(),1)]) mv = out0[:,ipass[0]] if total_boxes.shape[0]>0: pick = FacialImageProcessing.nms(total_boxes, 0.7, 'Union') total_boxes = total_boxes[pick,:] total_boxes = FacialImageProcessing.bbreg(total_boxes.copy(), np.transpose(mv[:,pick])) total_boxes = FacialImageProcessing.rerec(total_boxes.copy()) numbox = total_boxes.shape[0] #elapsed = time.time() - t #print('3 phase nb=%d elapsed=%f'%(numbox,elapsed)) if numbox>0: # third stage total_boxes = np.fix(total_boxes).astype(np.int32) dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = FacialImageProcessing.pad(total_boxes.copy(), w, h) tempimg = np.zeros((48,48,3,numbox)) for k in range(0,numbox): tmp = np.zeros((int(tmph[k]),int(tmpw[k]),3)) tmp[dy[k]-1:edy[k],dx[k]-1:edx[k],:] = img[y[k]-1:ey[k],x[k]-1:ex[k],:] if tmp.shape[0]>0 and tmp.shape[1]>0 or tmp.shape[0]==0 and tmp.shape[1]==0: tempimg[:,:,:,k] = cv2.resize(tmp, (48,48), interpolation=cv2.INTER_AREA) else: return np.empty() tempimg = (tempimg-127.5)*0.0078125 tempimg1 = np.transpose(tempimg, (3,1,0,2)) out = self.onet(tempimg1) out0 = np.transpose(out[0]) out1 = np.transpose(out[1]) out2 = np.transpose(out[2]) score = out2[1,:] points = out1 ipass = np.where(score>threshold[2]) points = points[:,ipass[0]] total_boxes = np.hstack([total_boxes[ipass[0],0:4].copy(), np.expand_dims(score[ipass].copy(),1)]) mv = out0[:,ipass[0]] w = total_boxes[:,2]-total_boxes[:,0]+1 h = total_boxes[:,3]-total_boxes[:,1]+1 points[0:5,:] = np.tile(w,(5, 1))*points[0:5,:] + np.tile(total_boxes[:,0],(5, 1))-1 points[5:10,:] = np.tile(h,(5, 1))*points[5:10,:] + np.tile(total_boxes[:,1],(5, 1))-1 if total_boxes.shape[0]>0: total_boxes = FacialImageProcessing.bbreg(total_boxes.copy(), np.transpose(mv)) pick = FacialImageProcessing.nms(total_boxes.copy(), 0.7, 'Min') total_boxes = total_boxes[pick,:] points = points[:,pick] #elapsed = time.time() - t #print('4 phase elapsed=%f'%(elapsed)) return total_boxes, points