Spaces:
Runtime error
Runtime error
File size: 19,598 Bytes
eb14dc8 bc565d4 cb57978 2d2033e eb14dc8 2d2033e bc565d4 d04bf10 32163e9 8a5b618 eb14dc8 a997532 db85c2c eb14dc8 cfe3fe5 d04bf10 cfe3fe5 d04bf10 c0dee52 d04bf10 cfe3fe5 2d2033e cfe3fe5 a83d8ed a327de9 c0dee52 db85c2c 2d2033e cfe3fe5 a327de9 c0dee52 cfe3fe5 d04bf10 a327de9 a997532 c0dee52 2d2033e a327de9 bc565d4 cfe3fe5 d04bf10 a327de9 c0dee52 cb57978 a327de9 bc565d4 cfe3fe5 74782aa a327de9 74782aa a327de9 74782aa cfe3fe5 c8d67a4 a327de9 d04bf10 edd6a32 c0dee52 a327de9 bc565d4 cfe3fe5 c8d67a4 a327de9 c8d67a4 cfe3fe5 d04bf10 a327de9 c0dee52 32163e9 96daa57 32163e9 6f997ea 32163e9 c0dee52 2d2033e a327de9 bc565d4 eb14dc8 cfe3fe5 32163e9 3a1b984 bc565d4 74782aa 54f5089 804e6f2 54f5089 ffb6ffc 804e6f2 32163e9 eb14dc8 551011b eb14dc8 551011b eb14dc8 2d3407c a327de9 eb14dc8 a327de9 804e6f2 a327de9 eb14dc8 2d3407c eb14dc8 a997532 eb14dc8 2d3407c a997532 33ef7a6 a327de9 eb14dc8 a327de9 804e6f2 a327de9 eb14dc8 2d2033e eb14dc8 2d2033e a327de9 eb14dc8 33ef7a6 a327de9 eb14dc8 a327de9 804e6f2 a327de9 eb14dc8 551011b eb14dc8 551011b eb14dc8 551011b a327de9 a997532 eb14dc8 33ef7a6 a327de9 eb14dc8 a327de9 804e6f2 a327de9 804e6f2 eb14dc8 33ef7a6 eb14dc8 33ef7a6 eb14dc8 33ef7a6 eb14dc8 33ef7a6 eb14dc8 33ef7a6 a327de9 eb14dc8 a327de9 804e6f2 a327de9 eb14dc8 a997532 551011b eb14dc8 551011b eb14dc8 551011b eb14dc8 551011b eb14dc8 551011b a327de9 eb14dc8 db85c2c cfe3fe5 1109407 cfe3fe5 32163e9 a327de9 32163e9 a327de9 32163e9 a327de9 c8d67a4 a327de9 32163e9 a327de9 eb14dc8 cfe3fe5 96daa57 a327de9 96daa57 a327de9 96daa57 a327de9 c8d67a4 a327de9 c8d67a4 a327de9 eb14dc8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
import gradio as gr
import spacy
from spacy import displacy
from spacy.tokens import Span
import pandas as pd
import base64
import random
DEFAULT_MODEL = "en_core_web"
DEFAULT_TEXT = "Apple is looking at buying U.K. startup for $1 billion."
texts = {"en": DEFAULT_TEXT, "ca": "Apple està buscant comprar una startup del Regne Unit per mil milions de dòlars", "da": "Apple overvejer at købe et britisk startup for 1 milliard dollar.", "de": "Die ganze Stadt ist ein Startup: Shenzhen ist das Silicon Valley für Hardware-Firmen",
"el": "Η άνιση κατανομή του πλούτου και του εισοδήματος, η οποία έχει λάβει τρομερές διαστάσεις, δεν δείχνει τάσεις βελτίωσης.", "es": "Apple está buscando comprar una startup del Reino Unido por mil millones de dólares.", "fi": "Itseajavat autot siirtävät vakuutusvastuun autojen valmistajille", "fr": "Apple cherche à acheter une start-up anglaise pour 1 milliard de dollars", "it": "Apple vuole comprare una startup del Regno Unito per un miliardo di dollari",
"ja": "アップルがイギリスの新興企業を10億ドルで購入を検討", "ko": "애플이 영국의 스타트업을 10억 달러에 인수하는 것을 알아보고 있다.", "lt": "Jaunikis pirmąją vestuvinę naktį iškeitė į areštinės gultą", "nb": "Apple vurderer å kjøpe britisk oppstartfirma for en milliard dollar.", "nl": "Apple overweegt om voor 1 miljard een U.K. startup te kopen",
"pl": "Poczuł przyjemną woń mocnej kawy.", "pt": "Apple está querendo comprar uma startup do Reino Unido por 100 milhões de dólares", "ro": "Apple plănuiește să cumpere o companie britanică pentru un miliard de dolari", "ru": "Apple рассматривает возможность покупки стартапа из Соединённого Королевства за $1 млрд", "sv": "Apple överväger att köpa brittisk startup för 1 miljard dollar.", "zh": "作为语言而言,为世界使用人数最多的语言,目前世界有五分之一人口做为母语。"}
button_css = "float: right; --tw-border-opacity: 1; border-color: rgb(229 231 235 / var(--tw-border-opacity)); --tw-gradient-from: rgb(243 244 246 / 0.7); --tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to, rgb(243 244 246 / 0)); --tw-gradient-to: rgb(229 231 235 / 0.8); --tw-text-opacity: 1; color: rgb(55 65 81 / var(--tw-text-opacity)); border-width: 1px; --tw-bg-opacity: 1; background-color: rgb(255 255 255 / var(--tw-bg-opacity)); background-image: linear-gradient(to bottom right, var(--tw-gradient-stops)); display: inline-flex; flex: 1 1 0%; align-items: center; justify-content: center; --tw-shadow: 0 1px 2px 0 rgb(0 0 0 / 0.05); --tw-shadow-colored: 0 1px 2px 0 var(--tw-shadow-color); box-shadow: var(--tw-ring-offset-shadow, 0 0 #0000), var(--tw-ring-shadow, 0 0 #0000), var(--tw-shadow); -webkit-appearance: button; border-radius: 0.5rem; padding-top: 0.5rem; padding-bottom: 0.5rem; padding-left: 1rem; padding-right: 1rem; font-size: 1rem; line-height: 1.5rem; font-weight: 600;"
DEFAULT_COLOR = "linear-gradient(90deg, #FFCA74, #7AECEC)"
DEFAULT_ENTS = ['CARDINAL', 'DATE', 'EVENT', 'FAC', 'GPE', 'LANGUAGE', 'LAW', 'LOC', 'MONEY',
'NORP', 'ORDINAL', 'ORG', 'PERCENT', 'PERSON', 'PRODUCT', 'QUANTITY', 'TIME', 'WORK_OF_ART']
DEFAULT_TOK_ATTR = ['idx', 'text', 'pos_', 'lemma_', 'shape_', 'dep_']
NOUN_ATTR = ['text', 'root.text', 'root.dep_', 'root.head.text']
# get the huggingface models specified in the requirements.txt file
def get_all_models():
with open("requirements.txt") as f:
content = f.readlines()
models = []
for line in content:
if "huggingface.co" in line:
# the first three tokens in model, ex. en_core_web
model = "_".join(line.split("/")[4].split("_")[:3])
if model not in models:
models.append(model)
return models
models = get_all_models()
# when clicked, download as SVG. Rendered as HTML on the page
def download_svg(svg):
encode = base64.b64encode(bytes(svg, 'utf-8'))
img = 'data:image/svg+xml;base64,' + str(encode)[2:-1]
html = f'<a download="displacy.svg" href="{img}" style="{button_css}">Download as SVG</a>'
return html
# create dependency graph, inputs are text, collapse punctuation,
# collapse phrases, compact, background color, font color, and model
def dependency(text, col_punct, col_phrase, compact, bg, font, model):
model_name = model + "_sm"
nlp = spacy.load(model_name)
doc = nlp(text)
options = {"compact": compact, "collapse_phrases": col_phrase,
"collapse_punct": col_punct, "bg": bg, "color": font}
svg = displacy.render(doc, style="dep", options=options)
download = download_svg(svg) # download button for SVG
return svg, download, model_name
# returns the NER displacy, inputs are text, checked ents, and model
def entity(text, ents, model):
model_name = model + "_sm"
nlp = spacy.load(model_name)
doc = nlp(text)
options = {"ents": ents}
svg = displacy.render(doc, style="ent", options=options)
return svg, model_name
# returns token attributes for the user inputs
def token(text, attributes, model):
model_name = model + "_sm"
nlp = spacy.load(model_name)
data = []
doc = nlp(text)
for tok in doc:
tok_data = []
for attr in attributes:
tok_data.append(getattr(tok, attr))
data.append(tok_data)
data = pd.DataFrame(data, columns=attributes)
return data, model_name
# returns token attributtes in the default state
# the return value is not a pandas DataFrame
def default_token(text, attributes, model):
model_name = model + "_sm"
nlp = spacy.load(model_name)
data = []
doc = nlp(text)
for tok in doc:
tok_data = []
for attr in attributes:
tok_data.append(getattr(tok, attr))
data.append(tok_data)
return data, model_name
# Get similarity of two random generated vectors
def random_vectors(text, model):
model_name = model + "_md"
nlp = spacy.load(model_name)
doc = nlp(text)
n_chunks = [chunk for chunk in doc.noun_chunks if doc.noun_chunks]
words = [tok for tok in doc if not tok.is_stop and tok.pos_ not in [
'PUNCT', "PROPN"]]
str_list = n_chunks + words
choice = random.choices(str_list, k=2)
return round(choice[0].similarity(choice[1]), 2), choice[0].text, choice[1].text, model_name
# Get similarity of two inputted vectors
def vectors(input1, input2, model):
model_name = model + "_md"
nlp = spacy.load(model_name)
return round(nlp(input1).similarity(nlp(input2)), 2), model_name
# display spans, inputs are text, spans, labels, and model
def span(text, span1, span2, label1, label2, model):
model_name = model + "_sm"
nlp = spacy.load(model_name)
doc = nlp(text)
if span1:
idx1_1 = 0
idx1_2 = 0
idx2_1 = 0
idx2_2 = 0
span1 = [split for split in span1.split(" ") if split]
span2 = [split for split in span2.split(" ") if split]
for i in range(len(list(doc))):
tok = list(doc)[i]
if span1[0] == tok.text:
idx1_1 = i
if span1[-1] == tok.text:
idx1_2 = i + 1
if span2[0] == tok.text:
idx2_1 = i
if span2[-1] == tok.text:
idx2_2 = i + 1
doc.spans["sc"] = [
Span(doc, idx1_1, idx1_2, label1),
Span(doc, idx2_1, idx2_2, label2),
]
else:
idx1_1 = 0
idx1_2 = round(len(list(doc)) / 2)
idx2_1 = 0
idx2_2 = 1
doc.spans["sc"] = [
Span(doc, idx1_1, idx1_2, label1),
Span(doc, idx2_1, idx2_2, label2),
]
svg = displacy.render(doc, style="span")
return svg, model_name
# returns noun chunks in text
def noun_chunks(text, model):
model_name = model + "_sm"
nlp = spacy.load(model_name)
data = []
doc = nlp(text)
for chunk in doc.noun_chunks:
data.append([chunk.text, chunk.root.text, chunk.root.dep_,
chunk.root.head.text])
data = pd.DataFrame(data, columns=NOUN_ATTR)
return data, model_name
# returns noun chuncks for the default value
# the return value is not a pandas DataFrame
def default_noun_chunks(text, model):
model_name = model + "_sm"
nlp = spacy.load(model_name)
data = []
doc = nlp(text)
for chunk in doc.noun_chunks:
data.append([chunk.text, chunk.root.text, chunk.root.dep_,
chunk.root.head.text])
return data, model_name
# get default text based on language model
def get_text(model):
for i in range(len(models)):
model = model.split("_")[0]
new_text = texts[model]
return new_text
demo = gr.Blocks(css="scrollbar.css")
with demo:
with gr.Box():
with gr.Row():
with gr.Column():
gr.Markdown("# Pipeline Visualizer")
gr.Markdown(
"### Visualize parts of the spaCy pipeline in an interactive Gradio demo")
with gr.Column():
gr.Image("pipeline.svg")
with gr.Box():
with gr.Column():
gr.Markdown(" ## Choose a language model and the inputted text")
with gr.Row():
with gr.Column(scale=0.25):
model_input = gr.Dropdown(
choices=models, value=DEFAULT_MODEL, interactive=True, label="Pretrained Pipelines")
with gr.Row():
with gr.Column(scale=0.5):
text_input = gr.Textbox(
value=DEFAULT_TEXT, interactive=True, label="Input Text")
with gr.Row():
with gr.Column(scale=0.25):
button = gr.Button("Update", variant="primary").style(full_width=False)
with gr.Box():
with gr.Column():
with gr.Row():
with gr.Column(scale=0.75):
gr.Markdown(
"## [🔗 Dependency Parser](https://spacy.io/usage/visualizers#dep)")
gr.Markdown(
"The dependency visualizer shows part-of-speech tags and syntactic dependencies")
with gr.Column(scale=0.25):
dep_model = gr.Textbox(
label="Model", value="en_core_web_sm")
with gr.Row():
with gr.Column():
col_punct = gr.Checkbox(
label="Collapse Punctuation", value=True)
col_phrase = gr.Checkbox(
label="Collapse Phrases", value=True)
compact = gr.Checkbox(label="Compact", value=False)
with gr.Column():
bg = gr.Textbox(
label="Background Color", value=DEFAULT_COLOR)
with gr.Column():
text = gr.Textbox(
label="Text Color", value="black")
with gr.Row():
dep_output = gr.HTML(value=dependency(
DEFAULT_TEXT, True, True, False, DEFAULT_COLOR, "black", DEFAULT_MODEL)[0])
with gr.Row():
with gr.Column(scale=0.25):
dep_button = gr.Button(
"Update Dependency Parser", variant="primary").style(full_width=False)
with gr.Column():
dep_download_button = gr.HTML(
value=download_svg(dep_output.value))
with gr.Box():
with gr.Column():
with gr.Row():
with gr.Column(scale=0.75):
gr.Markdown(
"## [🔗 Entity Recognizer](https://spacy.io/usage/visualizers#ent)")
gr.Markdown(
"The entity visualizer highlights named entities and their labels in a text")
with gr.Column(scale=0.25):
ent_model = gr.Textbox(
label="Model", value="en_core_web_sm")
ent_input = gr.CheckboxGroup(
DEFAULT_ENTS, value=DEFAULT_ENTS, label="Entity Types")
ent_output = gr.HTML(value=entity(
DEFAULT_TEXT, DEFAULT_ENTS, DEFAULT_MODEL)[0])
with gr.Row():
with gr.Column(scale=0.25):
ent_button = gr.Button(
"Update Entity Recognizer", variant="primary")
with gr.Box():
with gr.Column():
with gr.Row():
with gr.Column(scale=0.75):
gr.Markdown(
"## [🔗 Token Properties](https://spacy.io/usage/linguistic-features)")
gr.Markdown(
"When you put in raw text to spaCy, it returns a Doc object with different linguistic features")
with gr.Column(scale=0.25):
tok_model = gr.Textbox(
label="Model", value="en_core_web_sm")
with gr.Row():
with gr.Column(scale=0.5):
tok_input = gr.CheckboxGroup(
DEFAULT_TOK_ATTR, value=DEFAULT_TOK_ATTR, label="Token Attributes", interactive=True)
tok_output = gr.Dataframe(headers=DEFAULT_TOK_ATTR, value=default_token(
DEFAULT_TEXT, DEFAULT_TOK_ATTR, DEFAULT_MODEL)[0], overflow_row_behaviour="paginate")
with gr.Row():
with gr.Column(scale=0.25):
tok_button = gr.Button(
"Update Token Properties", variant="primary")
with gr.Box():
with gr.Column():
with gr.Row():
with gr.Column(scale=0.75):
gr.Markdown(
"## [🔗 Word and Phrase Similarity](https://spacy.io/usage/linguistic-features#vectors-similarity)")
gr.Markdown(
"Words and spans have similarity ratings based on their word vectors")
with gr.Column(scale=0.25):
sim_model = gr.Textbox(
label="Model", value="en_core_web_md")
with gr.Row():
with gr.Column(scale=0.25):
sim_text1 = gr.Textbox(
value="Apple", label="Word 1", interactive=True,)
with gr.Column(scale=0.25):
sim_text2 = gr.Textbox(
value="U.K. startup", label="Word 2", interactive=True,)
with gr.Column(scale=0.25):
sim_output = gr.Textbox(
label="Similarity Score", value="0.12")
with gr.Row():
with gr.Column(scale=0.25):
sim_random_button = gr.Button("Update random words")
with gr.Column(scale=0.25):
sim_button = gr.Button("Update similarity", variant="primary")
with gr.Box():
with gr.Column():
with gr.Row():
with gr.Column(scale=0.75):
gr.Markdown(
"## [🔗 Spans](https://spacy.io/usage/visualizers#span)")
gr.Markdown(
"The span visualizer highlights overlapping spans in a text")
with gr.Column(scale=0.25):
span_model = gr.Textbox(
label="Model", value="en_core_web_sm")
with gr.Row():
with gr.Column(scale=0.3):
span1 = gr.Textbox(
label="Span 1", value="U.K. startup", placeholder="Input a part of the sentence")
with gr.Column(scale=0.3):
label1 = gr.Textbox(value="ORG",
label="Label for Span 1")
with gr.Row():
with gr.Column(scale=0.3):
span2 = gr.Textbox(
label="Span 2", value="U.K.", placeholder="Input another part of the sentence")
with gr.Column(scale=0.3):
label2 = gr.Textbox(value="GPE",
label="Label for Span 2")
span_output = gr.HTML(value=span(
DEFAULT_TEXT, "U.K. startup", "U.K.", "ORG", "GPE", DEFAULT_MODEL)[0])
with gr.Row():
with gr.Column(scale=0.25):
span_button = gr.Button("Update Spans", variant="primary")
with gr.Box():
with gr.Column():
with gr.Row():
with gr.Column(scale=0.75):
gr.Markdown(
"## [🔗 Noun chunks](https://spacy.io/usage/linguistic-features#noun-chunks)")
gr.Markdown(
"You can use `doc.noun_chunks` to extract noun phrases from a doc object")
with gr.Column(scale=0.25):
noun_model = gr.Textbox(
label="Model", value="en_core_web_sm")
noun_output = gr.Dataframe(headers=NOUN_ATTR, value=default_noun_chunks(
DEFAULT_TEXT, DEFAULT_MODEL)[0], overflow_row_behaviour="paginate")
with gr.Row():
with gr.Column(scale=0.25):
noun_button = gr.Button(
"Update Noun Chunks", variant="primary")
# change text based on model input
model_input.change(get_text, inputs=[model_input], outputs=text_input)
# main button - update all components
button.click(dependency, inputs=[
text_input, col_punct, col_phrase, compact, bg, text, model_input], outputs=[dep_output, dep_download_button, dep_model])
button.click(
entity, inputs=[text_input, ent_input, model_input], outputs=[ent_output, ent_model])
button.click(
token, inputs=[text_input, tok_input, model_input], outputs=[tok_output, tok_model])
button.click(vectors, inputs=[sim_text1,
sim_text2, model_input], outputs=[sim_output, sim_model])
button.click(
span, inputs=[text_input, span1, span2, label1, label2, model_input], outputs=[span_output, span_model])
button.click(
noun_chunks, inputs=[text_input, model_input], outputs=[noun_output, noun_model])
# individual component buttons
dep_button.click(dependency, inputs=[
text_input, col_punct, col_phrase, compact, bg, text, model_input], outputs=[dep_output, dep_download_button, dep_model])
ent_button.click(
entity, inputs=[text_input, ent_input, model_input], outputs=[ent_output, ent_model])
tok_button.click(
token, inputs=[text_input, tok_input, model_input], outputs=[tok_output, tok_model])
sim_button.click(vectors, inputs=[
sim_text1, sim_text2, model_input], outputs=[sim_output, sim_model])
sim_random_button.click(random_vectors, inputs=[text_input, model_input], outputs=[
sim_output, sim_text1, sim_text2, sim_model])
span_button.click(
span, inputs=[text_input, span1, span2, label1, label2, model_input], outputs=[span_output, span_model])
noun_button.click(
noun_chunks, inputs=[text_input, model_input], outputs=[noun_output, noun_model])
demo.launch() |