File size: 19,598 Bytes
eb14dc8
bc565d4
 
 
cb57978
2d2033e
eb14dc8
2d2033e
bc565d4
d04bf10
32163e9
 
 
 
 
8a5b618
eb14dc8
 
 
 
a997532
db85c2c
eb14dc8
 
 
cfe3fe5
d04bf10
 
 
 
 
 
cfe3fe5
d04bf10
 
 
 
c0dee52
d04bf10
 
cfe3fe5
2d2033e
 
 
 
 
 
cfe3fe5
 
a83d8ed
a327de9
 
c0dee52
 
db85c2c
2d2033e
cfe3fe5
a327de9
c0dee52
cfe3fe5
d04bf10
a327de9
a997532
c0dee52
 
2d2033e
a327de9
bc565d4
cfe3fe5
d04bf10
a327de9
 
c0dee52
 
 
 
 
 
 
cb57978
a327de9
bc565d4
cfe3fe5
 
74782aa
a327de9
 
74782aa
 
 
 
 
 
 
a327de9
74782aa
cfe3fe5
c8d67a4
a327de9
 
d04bf10
edd6a32
c0dee52
 
 
 
a327de9
bc565d4
cfe3fe5
c8d67a4
a327de9
 
 
c8d67a4
cfe3fe5
d04bf10
a327de9
 
c0dee52
32163e9
 
 
 
 
 
96daa57
 
32163e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f997ea
32163e9
 
 
 
 
 
 
 
c0dee52
2d2033e
a327de9
bc565d4
eb14dc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfe3fe5
32163e9
 
 
 
 
 
3a1b984
bc565d4
 
74782aa
54f5089
 
 
 
804e6f2
54f5089
 
ffb6ffc
 
804e6f2
32163e9
eb14dc8
551011b
 
 
eb14dc8
551011b
 
eb14dc8
 
 
2d3407c
 
a327de9
eb14dc8
a327de9
804e6f2
a327de9
 
eb14dc8
 
 
2d3407c
 
 
 
 
 
 
 
 
 
 
 
 
 
eb14dc8
 
 
 
a997532
eb14dc8
2d3407c
a997532
 
33ef7a6
 
a327de9
eb14dc8
a327de9
804e6f2
a327de9
 
eb14dc8
 
 
2d2033e
eb14dc8
2d2033e
a327de9
eb14dc8
 
 
 
33ef7a6
 
a327de9
eb14dc8
a327de9
804e6f2
a327de9
 
eb14dc8
 
 
551011b
eb14dc8
551011b
eb14dc8
551011b
a327de9
a997532
eb14dc8
 
 
33ef7a6
 
a327de9
eb14dc8
a327de9
804e6f2
a327de9
804e6f2
eb14dc8
 
 
33ef7a6
eb14dc8
33ef7a6
 
eb14dc8
33ef7a6
 
eb14dc8
33ef7a6
 
eb14dc8
 
 
 
 
33ef7a6
 
a327de9
eb14dc8
a327de9
804e6f2
a327de9
 
eb14dc8
 
a997532
551011b
eb14dc8
551011b
 
eb14dc8
551011b
 
 
eb14dc8
551011b
 
eb14dc8
551011b
 
 
a327de9
eb14dc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db85c2c
cfe3fe5
1109407
cfe3fe5
32163e9
a327de9
32163e9
a327de9
32163e9
a327de9
c8d67a4
a327de9
32163e9
a327de9
eb14dc8
 
cfe3fe5
 
96daa57
a327de9
96daa57
a327de9
96daa57
a327de9
c8d67a4
a327de9
c8d67a4
a327de9
eb14dc8
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
import gradio as gr
import spacy
from spacy import displacy
from spacy.tokens import Span
import pandas as pd
import base64
import random


DEFAULT_MODEL = "en_core_web"
DEFAULT_TEXT = "Apple is looking at buying U.K. startup for $1 billion."
texts = {"en": DEFAULT_TEXT, "ca": "Apple està buscant comprar una startup del Regne Unit per mil milions de dòlars", "da": "Apple overvejer at købe et britisk startup for 1 milliard dollar.", "de": "Die ganze Stadt ist ein Startup: Shenzhen ist das Silicon Valley für Hardware-Firmen",
         "el": "Η άνιση κατανομή του πλούτου και του εισοδήματος, η οποία έχει λάβει τρομερές διαστάσεις, δεν δείχνει τάσεις βελτίωσης.", "es": "Apple está buscando comprar una startup del Reino Unido por mil millones de dólares.", "fi": "Itseajavat autot siirtävät vakuutusvastuun autojen valmistajille", "fr": "Apple cherche à acheter une start-up anglaise pour 1 milliard de dollars", "it": "Apple vuole comprare una startup del Regno Unito per un miliardo di dollari",
         "ja": "アップルがイギリスの新興企業を10億ドルで購入を検討", "ko": "애플이 영국의 스타트업을 10억 달러에 인수하는 것을 알아보고 있다.", "lt": "Jaunikis pirmąją vestuvinę naktį iškeitė į areštinės gultą", "nb": "Apple vurderer å kjøpe britisk oppstartfirma for en milliard dollar.", "nl": "Apple overweegt om voor 1 miljard een U.K. startup te kopen",
         "pl": "Poczuł przyjemną woń mocnej kawy.", "pt": "Apple está querendo comprar uma startup do Reino Unido por 100 milhões de dólares", "ro": "Apple plănuiește să cumpere o companie britanică pentru un miliard de dolari", "ru": "Apple рассматривает возможность покупки стартапа из Соединённого Королевства за $1 млрд", "sv": "Apple överväger att köpa brittisk startup för 1 miljard dollar.", "zh": "作为语言而言,为世界使用人数最多的语言,目前世界有五分之一人口做为母语。"}
button_css = "float: right; --tw-border-opacity: 1; border-color: rgb(229 231 235 / var(--tw-border-opacity)); --tw-gradient-from: rgb(243 244 246 / 0.7); --tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to, rgb(243 244 246 / 0)); --tw-gradient-to: rgb(229 231 235 / 0.8); --tw-text-opacity: 1; color: rgb(55 65 81 / var(--tw-text-opacity));    border-width: 1px; --tw-bg-opacity: 1; background-color: rgb(255 255 255 / var(--tw-bg-opacity)); background-image: linear-gradient(to bottom right, var(--tw-gradient-stops)); display: inline-flex; flex: 1 1 0%; align-items: center; justify-content: center;    --tw-shadow: 0 1px 2px 0 rgb(0 0 0 / 0.05); --tw-shadow-colored: 0 1px 2px 0 var(--tw-shadow-color); box-shadow: var(--tw-ring-offset-shadow, 0 0 #0000), var(--tw-ring-shadow, 0 0 #0000), var(--tw-shadow); -webkit-appearance: button; border-radius: 0.5rem; padding-top: 0.5rem; padding-bottom: 0.5rem; padding-left: 1rem; padding-right: 1rem; font-size: 1rem; line-height: 1.5rem; font-weight: 600;"
DEFAULT_COLOR = "linear-gradient(90deg, #FFCA74, #7AECEC)"
DEFAULT_ENTS = ['CARDINAL', 'DATE', 'EVENT', 'FAC', 'GPE', 'LANGUAGE', 'LAW', 'LOC', 'MONEY',
                'NORP', 'ORDINAL', 'ORG', 'PERCENT', 'PERSON', 'PRODUCT', 'QUANTITY', 'TIME', 'WORK_OF_ART']
DEFAULT_TOK_ATTR = ['idx', 'text', 'pos_', 'lemma_', 'shape_', 'dep_']
NOUN_ATTR = ['text', 'root.text', 'root.dep_', 'root.head.text']




# get the huggingface models specified in the requirements.txt file
def get_all_models():
    with open("requirements.txt") as f:
        content = f.readlines()
        models = []
        for line in content:
            if "huggingface.co" in line:
                # the first three tokens in model, ex. en_core_web
                model = "_".join(line.split("/")[4].split("_")[:3])
                if model not in models:
                    models.append(model)
        return models

models = get_all_models()

# when clicked, download as SVG. Rendered as HTML on the page
def download_svg(svg):
    encode = base64.b64encode(bytes(svg, 'utf-8'))
    img = 'data:image/svg+xml;base64,' + str(encode)[2:-1]
    html = f'<a download="displacy.svg" href="{img}" style="{button_css}">Download as SVG</a>'
    return html

# create dependency graph, inputs are text, collapse punctuation, 
# collapse phrases, compact, background color, font color, and model
def dependency(text, col_punct, col_phrase, compact, bg, font, model):
    model_name = model + "_sm"
    nlp = spacy.load(model_name)
    doc = nlp(text)
    options = {"compact": compact, "collapse_phrases": col_phrase,
               "collapse_punct": col_punct, "bg": bg, "color": font}
    svg = displacy.render(doc, style="dep", options=options)
    download = download_svg(svg) # download button for SVG
    return svg, download, model_name

# returns the NER displacy, inputs are text, checked ents, and model
def entity(text, ents, model):
    model_name = model + "_sm"
    nlp = spacy.load(model_name)
    doc = nlp(text)
    options = {"ents": ents}
    svg = displacy.render(doc, style="ent", options=options)
    return svg, model_name

# returns token attributes for the user inputs
def token(text, attributes, model):
    model_name = model + "_sm"
    nlp = spacy.load(model_name)
    data = []
    doc = nlp(text)
    for tok in doc:
        tok_data = []
        for attr in attributes:
            tok_data.append(getattr(tok, attr))
        data.append(tok_data)
    data = pd.DataFrame(data, columns=attributes)
    return data, model_name

# returns token attributtes in the default state
# the return value is not a pandas DataFrame
def default_token(text, attributes, model):
    model_name = model + "_sm"
    nlp = spacy.load(model_name)
    data = []
    doc = nlp(text)
    for tok in doc:
        tok_data = []
        for attr in attributes:
            tok_data.append(getattr(tok, attr))
        data.append(tok_data)
    return data, model_name

# Get similarity of two random generated vectors
def random_vectors(text, model):
    model_name = model + "_md"
    nlp = spacy.load(model_name)
    doc = nlp(text)
    n_chunks = [chunk for chunk in doc.noun_chunks if doc.noun_chunks]
    words = [tok for tok in doc if not tok.is_stop and tok.pos_ not in [
        'PUNCT', "PROPN"]]
    str_list = n_chunks + words
    choice = random.choices(str_list, k=2)
    return round(choice[0].similarity(choice[1]), 2), choice[0].text, choice[1].text, model_name

# Get similarity of two inputted vectors
def vectors(input1, input2, model):
    model_name = model + "_md"
    nlp = spacy.load(model_name)
    return round(nlp(input1).similarity(nlp(input2)), 2), model_name

# display spans, inputs are text, spans, labels, and model
def span(text, span1, span2, label1, label2, model):
    model_name = model + "_sm"
    nlp = spacy.load(model_name)
    doc = nlp(text)
    if span1:
        idx1_1 = 0
        idx1_2 = 0
        idx2_1 = 0
        idx2_2 = 0

        span1 = [split for split in span1.split(" ") if split]
        span2 = [split for split in span2.split(" ") if split]

        for i in range(len(list(doc))):
            tok = list(doc)[i]
            if span1[0] == tok.text:
                idx1_1 = i
            if span1[-1] == tok.text:
                idx1_2 = i + 1
            if span2[0] == tok.text:
                idx2_1 = i
            if span2[-1] == tok.text:
                idx2_2 = i + 1

        doc.spans["sc"] = [
            Span(doc, idx1_1, idx1_2, label1),
            Span(doc, idx2_1, idx2_2, label2),
        ]
    else:
        idx1_1 = 0
        idx1_2 = round(len(list(doc)) / 2)
        idx2_1 = 0
        idx2_2 = 1

        doc.spans["sc"] = [
            Span(doc, idx1_1, idx1_2, label1),
            Span(doc, idx2_1, idx2_2, label2),
        ]

    svg = displacy.render(doc, style="span")
    return svg, model_name

# returns noun chunks in text
def noun_chunks(text, model):
    model_name = model + "_sm"
    nlp = spacy.load(model_name)
    data = []
    doc = nlp(text)
    for chunk in doc.noun_chunks:
        data.append([chunk.text, chunk.root.text, chunk.root.dep_,
            chunk.root.head.text])
    data = pd.DataFrame(data, columns=NOUN_ATTR)
    return data, model_name

# returns noun chuncks for the default value
# the return value is not a pandas DataFrame
def default_noun_chunks(text, model):
    model_name = model + "_sm"
    nlp = spacy.load(model_name)
    data = []
    doc = nlp(text)
    for chunk in doc.noun_chunks:
        data.append([chunk.text, chunk.root.text, chunk.root.dep_,
            chunk.root.head.text])
    return data, model_name

# get default text based on language model
def get_text(model):
    for i in range(len(models)):
        model = model.split("_")[0]
        new_text = texts[model]
    return new_text

demo = gr.Blocks(css="scrollbar.css")

with demo:
    with gr.Box():
        with gr.Row():
            with gr.Column():
                gr.Markdown("# Pipeline Visualizer")
                gr.Markdown(
                    "### Visualize parts of the spaCy pipeline in an interactive Gradio demo")
            with gr.Column():
                gr.Image("pipeline.svg")
    with gr.Box():
        with gr.Column():
            gr.Markdown(" ## Choose a language model and the inputted text")
            with gr.Row():
                with gr.Column(scale=0.25):
                    model_input = gr.Dropdown(
                        choices=models, value=DEFAULT_MODEL, interactive=True, label="Pretrained Pipelines")
            with gr.Row():
                with gr.Column(scale=0.5):
                    text_input = gr.Textbox(
                        value=DEFAULT_TEXT, interactive=True, label="Input Text")
            with gr.Row():
                with gr.Column(scale=0.25):
                    button = gr.Button("Update", variant="primary").style(full_width=False)
    with gr.Box():
        with gr.Column():
            with gr.Row():
                with gr.Column(scale=0.75):
                    gr.Markdown(
                        "## [🔗 Dependency Parser](https://spacy.io/usage/visualizers#dep)")
                    gr.Markdown(
                        "The dependency visualizer shows part-of-speech tags and syntactic dependencies")
                with gr.Column(scale=0.25):
                    dep_model = gr.Textbox(
                        label="Model", value="en_core_web_sm")
            with gr.Row():
                with gr.Column():
                    col_punct = gr.Checkbox(
                        label="Collapse Punctuation", value=True)
                    col_phrase = gr.Checkbox(
                        label="Collapse Phrases", value=True)
                    compact = gr.Checkbox(label="Compact", value=False)
                with gr.Column():
                    bg = gr.Textbox(
                        label="Background Color", value=DEFAULT_COLOR)
                with gr.Column():
                    text = gr.Textbox(
                        label="Text Color", value="black")
            with gr.Row():
                dep_output = gr.HTML(value=dependency(
                    DEFAULT_TEXT, True, True, False, DEFAULT_COLOR, "black", DEFAULT_MODEL)[0])
            with gr.Row():
                with gr.Column(scale=0.25):
                    dep_button = gr.Button(
                        "Update Dependency Parser", variant="primary").style(full_width=False)
                with gr.Column():
                    dep_download_button = gr.HTML(
                        value=download_svg(dep_output.value))
    with gr.Box():
        with gr.Column():
            with gr.Row():
                with gr.Column(scale=0.75):
                    gr.Markdown(
                        "## [🔗 Entity Recognizer](https://spacy.io/usage/visualizers#ent)")
                    gr.Markdown(
                        "The entity visualizer highlights named entities and their labels in a text")
                with gr.Column(scale=0.25):
                        ent_model = gr.Textbox(
                            label="Model", value="en_core_web_sm")
            ent_input = gr.CheckboxGroup(
                DEFAULT_ENTS, value=DEFAULT_ENTS, label="Entity Types")
            ent_output = gr.HTML(value=entity(
                DEFAULT_TEXT, DEFAULT_ENTS, DEFAULT_MODEL)[0])
            with gr.Row():
                with gr.Column(scale=0.25):
                    ent_button = gr.Button(
                        "Update Entity Recognizer", variant="primary")
    with gr.Box():
        with gr.Column():
            with gr.Row():
                with gr.Column(scale=0.75):
                    gr.Markdown(
                        "## [🔗 Token Properties](https://spacy.io/usage/linguistic-features)")
                    gr.Markdown(
                        "When you put in raw text to spaCy, it returns a Doc object with different linguistic features")
                with gr.Column(scale=0.25):
                        tok_model = gr.Textbox(
                                label="Model", value="en_core_web_sm")               
            with gr.Row():
                with gr.Column(scale=0.5):
                    tok_input = gr.CheckboxGroup(
                        DEFAULT_TOK_ATTR, value=DEFAULT_TOK_ATTR, label="Token Attributes", interactive=True)
            tok_output = gr.Dataframe(headers=DEFAULT_TOK_ATTR, value=default_token(
                DEFAULT_TEXT, DEFAULT_TOK_ATTR, DEFAULT_MODEL)[0], overflow_row_behaviour="paginate")
            with gr.Row():
                with gr.Column(scale=0.25):
                    tok_button = gr.Button(
                        "Update Token Properties", variant="primary")
    with gr.Box():
        with gr.Column():
            with gr.Row():
                with gr.Column(scale=0.75):
                    gr.Markdown(
                        "## [🔗 Word and Phrase Similarity](https://spacy.io/usage/linguistic-features#vectors-similarity)")
                    gr.Markdown(
                        "Words and spans have similarity ratings based on their word vectors")
                with gr.Column(scale=0.25):
                        sim_model = gr.Textbox(
                            label="Model", value="en_core_web_md")             
            with gr.Row():
                with gr.Column(scale=0.25):
                    sim_text1 = gr.Textbox(
                        value="Apple", label="Word 1", interactive=True,)
                with gr.Column(scale=0.25):
                    sim_text2 = gr.Textbox(
                        value="U.K. startup", label="Word 2", interactive=True,)
                with gr.Column(scale=0.25):
                    sim_output = gr.Textbox(
                        label="Similarity Score", value="0.12")
            with gr.Row():
                with gr.Column(scale=0.25):
                    sim_random_button = gr.Button("Update random words")
                with gr.Column(scale=0.25):
                    sim_button = gr.Button("Update similarity", variant="primary")
    with gr.Box():
        with gr.Column():
            with gr.Row():
                with gr.Column(scale=0.75):
                    gr.Markdown(
                        "## [🔗 Spans](https://spacy.io/usage/visualizers#span)")
                    gr.Markdown(
                        "The span visualizer highlights overlapping spans in a text")
                with gr.Column(scale=0.25):
                        span_model = gr.Textbox(
                                label="Model", value="en_core_web_sm")
            with gr.Row():
                with gr.Column(scale=0.3):
                    span1 = gr.Textbox(
                        label="Span 1", value="U.K. startup", placeholder="Input a part of the sentence")
                with gr.Column(scale=0.3):
                    label1 = gr.Textbox(value="ORG",
                                        label="Label for Span 1")
            with gr.Row():
                with gr.Column(scale=0.3):
                    span2 = gr.Textbox(
                        label="Span 2", value="U.K.", placeholder="Input another part of the sentence")
                with gr.Column(scale=0.3):
                    label2 = gr.Textbox(value="GPE",
                                        label="Label for Span 2")
            span_output = gr.HTML(value=span(
                DEFAULT_TEXT, "U.K. startup", "U.K.", "ORG", "GPE", DEFAULT_MODEL)[0])
            with gr.Row():
                with gr.Column(scale=0.25):
                    span_button = gr.Button("Update Spans", variant="primary")
    with gr.Box():
        with gr.Column():
            with gr.Row():
                with gr.Column(scale=0.75):
                    gr.Markdown(
                        "## [🔗 Noun chunks](https://spacy.io/usage/linguistic-features#noun-chunks)")
                    gr.Markdown(
                        "You can use `doc.noun_chunks` to extract noun phrases from a doc object")
                with gr.Column(scale=0.25):
                        noun_model = gr.Textbox(
                                label="Model", value="en_core_web_sm") 
            noun_output = gr.Dataframe(headers=NOUN_ATTR, value=default_noun_chunks(
                DEFAULT_TEXT, DEFAULT_MODEL)[0], overflow_row_behaviour="paginate")
            with gr.Row():
                with gr.Column(scale=0.25):
                    noun_button = gr.Button(
                        "Update Noun Chunks", variant="primary")

    # change text based on model input
    model_input.change(get_text, inputs=[model_input], outputs=text_input)
    # main button - update all components
    button.click(dependency, inputs=[
        text_input, col_punct, col_phrase, compact, bg, text, model_input], outputs=[dep_output, dep_download_button, dep_model])
    button.click(
        entity, inputs=[text_input, ent_input, model_input], outputs=[ent_output, ent_model])
    button.click(
        token, inputs=[text_input, tok_input, model_input], outputs=[tok_output, tok_model])
    button.click(vectors, inputs=[sim_text1,
                 sim_text2, model_input], outputs=[sim_output, sim_model])
    button.click(
        span, inputs=[text_input, span1, span2, label1, label2, model_input], outputs=[span_output, span_model])
    button.click(
        noun_chunks, inputs=[text_input, model_input], outputs=[noun_output, noun_model])
    
    # individual component buttons
    dep_button.click(dependency, inputs=[
        text_input, col_punct, col_phrase, compact, bg, text, model_input], outputs=[dep_output, dep_download_button, dep_model])
    ent_button.click(
        entity, inputs=[text_input, ent_input, model_input], outputs=[ent_output, ent_model])
    tok_button.click(
        token, inputs=[text_input, tok_input, model_input], outputs=[tok_output, tok_model])
    sim_button.click(vectors, inputs=[
                     sim_text1, sim_text2, model_input], outputs=[sim_output, sim_model])
    sim_random_button.click(random_vectors, inputs=[text_input, model_input], outputs=[
                            sim_output, sim_text1, sim_text2, sim_model])
    span_button.click(
        span, inputs=[text_input, span1, span2, label1, label2, model_input], outputs=[span_output, span_model])
    noun_button.click(
        noun_chunks, inputs=[text_input, model_input], outputs=[noun_output, noun_model])
      
demo.launch()