Victoria Slocum
NOT PRETTY
2e9de90
raw
history blame
13.8 kB
import spacy
from spacy import displacy
import random
from spacy.tokens import Span
import gradio as gr
import pandas as pd
DEFAULT_MODEL = "en_core_web"
DEFAULT_TEXT = "Apple is looking at buying U.K. startup for $1 billion."
DEFAULT_TOK_ATTR = ['idx', 'text', 'pos_', 'lemma_', 'shape_', 'dep_']
DEFAULT_ENTS = ['CARDINAL', 'DATE', 'EVENT', 'FAC', 'GPE', 'LANGUAGE', 'LAW', 'LOC', 'MONEY',
'NORP', 'ORDINAL', 'ORG', 'PERCENT', 'PERSON', 'PRODUCT', 'QUANTITY', 'TIME', 'WORK_OF_ART']
DEFAULT_COLOR = "linear-gradient(90deg, #FFCA74, #7AECEC)"
texts = {"en": DEFAULT_TEXT, "ca": "Apple està buscant comprar una startup del Regne Unit per mil milions de dòlars", "da": "Apple overvejer at købe et britisk startup for 1 milliard dollar.", "de": "Die ganze Stadt ist ein Startup: Shenzhen ist das Silicon Valley für Hardware-Firmen",
"el": "Η άνιση κατανομή του πλούτου και του εισοδήματος, η οποία έχει λάβει τρομερές διαστάσεις, δεν δείχνει τάσεις βελτίωσης.", "es": "Apple está buscando comprar una startup del Reino Unido por mil millones de dólares.", "fi": "Itseajavat autot siirtävät vakuutusvastuun autojen valmistajille", "fr": "Apple cherche à acheter une start-up anglaise pour 1 milliard de dollars", "it": "Apple vuole comprare una startup del Regno Unito per un miliardo di dollari",
"ja": "アップルがイギリスの新興企業を10億ドルで購入を検討", "ko": "애플이 영국의 스타트업을 10억 달러에 인수하는 것을 알아보고 있다.", "lt": "Jaunikis pirmąją vestuvinę naktį iškeitė į areštinės gultą", "nb": "Apple vurderer å kjøpe britisk oppstartfirma for en milliard dollar.", "nl": "Apple overweegt om voor 1 miljard een U.K. startup te kopen",
"pl": "Poczuł przyjemną woń mocnej kawy.", "pt": "Apple está querendo comprar uma startup do Reino Unido por 100 milhões de dólares", "ro": "Apple plănuiește să cumpere o companie britanică pentru un miliard de dolari", "ru": "Apple рассматривает возможность покупки стартапа из Соединённого Королевства за $1 млрд", "sv": "Apple överväger att köpa brittisk startup för 1 miljard dollar.", "zh": "作为语言而言,为世界使用人数最多的语言,目前世界有五分之一人口做为母语。"}
def get_all_models():
with open("requirements.txt") as f:
content = f.readlines()
models = []
for line in content:
if "huggingface.co" in line:
model = "_".join(line.split("/")[4].split("_")[:3])
if model not in models:
models.append(model)
return models
models = get_all_models()
def dependency(text, col_punct, col_phrase, compact, bg, font, model):
nlp = spacy.load(model + "_sm")
doc = nlp(text)
options = {"compact": compact, "collapse_phrases": col_phrase,
"collapse_punct": col_punct, "bg": bg, "color": font}
html = displacy.render(doc, style="dep", options=options)
return html
def entity(text, ents, model):
nlp = spacy.load(model + "_sm")
doc = nlp(text)
options = {"ents": ents}
html = displacy.render(doc, style="ent", options=options)
return html
def token(text, attributes, model):
nlp = spacy.load(model + "_sm")
data = []
doc = nlp(text)
for tok in doc:
tok_data = []
for attr in attributes:
tok_data.append(getattr(tok, attr))
data.append(tok_data)
data = pd.DataFrame(data, columns=attributes)
return data
def default_token(text, attributes, model):
nlp = spacy.load(model + "_sm")
data = []
doc = nlp(text)
for tok in doc:
tok_data = []
for attr in attributes:
tok_data.append(getattr(tok, attr))
data.append(tok_data)
return data
def random_vectors(text, model):
nlp = spacy.load(model + "_md")
doc = nlp(text)
n_chunks = [chunk for chunk in doc.noun_chunks if doc.noun_chunks]
words = [tok for tok in doc if not tok.is_stop and tok.pos_ not in [
'PUNCT', "PROPN"]]
str_list = n_chunks + words
choice = random.choices(str_list, k=2)
return round(choice[0].similarity(choice[1]), 2), choice[0].text, choice[1].text
def vectors(input1, input2, model):
nlp = spacy.load(model + "_md")
return round(nlp(input1).similarity(nlp(input2)), 2)
def span(text, span1, span2, label1, label2, model):
nlp = spacy.load(model + "_sm")
doc = nlp(text)
if span1:
idx1_1 = 0
idx1_2 = 0
idx2_1 = 0
idx2_2 = 0
span1 = [split for split in span1.split(" ") if split]
span2 = [split for split in span2.split(" ") if split]
for i in range(len(list(doc))):
tok = list(doc)[i]
if span1[0] == tok.text:
idx1_1 = i
if span1[-1] == tok.text:
idx1_2 = i + 1
if span2[0] == tok.text:
idx2_1 = i
if span2[-1] == tok.text:
idx2_2 = i + 1
doc.spans["sc"] = [
Span(doc, idx1_1, idx1_2, label1),
Span(doc, idx2_1, idx2_2, label2),
]
else:
idx1_1 = 0
idx1_2 = round(len(list(doc)) / 2)
idx2_1 = 0
idx2_2 = 1
doc.spans["sc"] = [
Span(doc, idx1_1, idx1_2, label1),
Span(doc, idx2_1, idx2_2, label2),
]
html = displacy.render(doc, style="span")
return html
def get_text(model):
for i in range(len(models)):
model = model.split("_")[0]
new_text = texts[model]
return new_text
demo = gr.Blocks()
with demo:
with gr.Box():
with gr.Column():
gr.Markdown(" ## Chose a language model and input text")
with gr.Row():
with gr.Column():
model_input = gr.Dropdown(
choices=models, value=DEFAULT_MODEL, interactive=True, label="Pretrained Pipelines")
with gr.Column():
text_button = gr.Button("Get text in model language")
with gr.Column():
gr.Markdown("")
with gr.Column():
gr.Markdown("")
with gr.Row():
with gr.Column():
text_input = gr.Textbox(
value=DEFAULT_TEXT, interactive=True, label="Input Text")
with gr.Column():
gr.Markdown("")
button = gr.Button("Generate", variant="primary")
with gr.Column():
with gr.Tabs():
with gr.TabItem(""):
with gr.Column():
gr.Markdown(
"## [Dependency Parser](https://spacy.io/usage/visualizers#dep)")
gr.Markdown(
"The dependency visualizer, `dep`, shows part-of-speech tags and syntactic dependencies.")
with gr.Row():
with gr.Column():
col_punct = gr.Checkbox(
label="Collapse Punctuation", value=True)
col_phrase = gr.Checkbox(
label="Collapse Phrases", value=True)
compact = gr.Checkbox(label="Compact", value=False)
with gr.Column():
bg = gr.Textbox(
label="Background Color", value=DEFAULT_COLOR)
with gr.Column():
text = gr.Textbox(
label="Text Color", value="black")
depen_output = gr.HTML(value=dependency(
DEFAULT_TEXT, True, True, False, DEFAULT_COLOR, "black", DEFAULT_MODEL))
dep_button = gr.Button("Generate Dependency Parser")
gr.Markdown("\n\n\n")
with gr.Box():
with gr.Column():
gr.Markdown(
"## [Entity Recognizer](https://spacy.io/usage/visualizers#ent)")
gr.Markdown(
"The entity visualizer, `ent`, highlights named entities and their labels in a text.")
entity_input = gr.CheckboxGroup(
DEFAULT_ENTS, value=DEFAULT_ENTS)
entity_output = gr.HTML(value=entity(
DEFAULT_TEXT, DEFAULT_ENTS, DEFAULT_MODEL))
ent_button = gr.Button("Generate Entity Recognizer")
with gr.Box():
with gr.Column():
gr.Markdown(
"## [Token Properties](https://spacy.io/usage/linguistic-features)")
gr.Markdown("When you put in raw text to spaCy, it returns a `Doc` object with different linguistic features")
with gr.Column():
with gr.Row():
with gr.Column():
tok_input = gr.CheckboxGroup(
DEFAULT_TOK_ATTR, value=DEFAULT_TOK_ATTR)
with gr.Column():
gr.Markdown("")
tok_output = gr.Dataframe(headers=DEFAULT_TOK_ATTR, value=default_token(
DEFAULT_TEXT, DEFAULT_TOK_ATTR, DEFAULT_MODEL), overflow_row_behaviour="paginate")
tok_button = gr.Button("Generate Token Properties")
with gr.Box():
with gr.Column():
gr.Markdown(
"## [Word and Phrase Similarity](https://spacy.io/usage/linguistic-features#vectors-similarity)")
gr.Markdown("Words and spans have similarity ratings based off of their word vectors, or word embeddings")
with gr.Row():
with gr.Column():
sim_text1 = gr.Textbox(
value="Apple", label="Word 1", interactive=True,)
with gr.Column():
sim_text2 = gr.Textbox(
value="U.K. startup", label="Word 2", interactive=True,)
with gr.Column():
sim_output = gr.Textbox(
label="Similarity Score", value="0.12")
with gr.Column():
gr.Markdown("")
sim_random_button = gr.Button("Generate random words")
sim_button = gr.Button("Generate similarity")
with gr.Box():
with gr.Column():
gr.Markdown(
"## [Spans](https://spacy.io/usage/visualizers#span)")
gr.Markdown("The span visualizer, `span`, highlights overlapping spans in a text.")
with gr.Column():
with gr.Row():
with gr.Column():
span1 = gr.Textbox(
label="Span 1", value="U.K. startup", placeholder="Input a part of the sentence")
with gr.Column():
label1 = gr.Textbox(value="ORG",
label="Label for Span 1")
with gr.Column():
gr.Markdown("")
with gr.Column():
gr.Markdown("")
with gr.Row():
with gr.Column():
span2 = gr.Textbox(
label="Span 2", value="U.K.", placeholder="Input another part of the sentence")
with gr.Column():
label2 = gr.Textbox(value="GPE",
label="Label for Span 2")
with gr.Column():
gr.Markdown("")
with gr.Column():
gr.Markdown("")
span_output = gr.HTML(value=span(
DEFAULT_TEXT, "U.K. startup", "U.K.", "ORG", "GPE", DEFAULT_MODEL))
gr.Markdown(value="\n\n\n\n")
gr.Markdown(value="\n\n\n\n")
span_button = gr.Button("Generate spans")
text_button.click(get_text, inputs=[model_input], outputs=text_input)
button.click(dependency, inputs=[
text_input, col_punct, col_phrase, compact, bg, text, model_input], outputs=depen_output)
button.click(
entity, inputs=[text_input, entity_input, model_input], outputs=entity_output)
button.click(
token, inputs=[text_input, tok_input, model_input], outputs=tok_output)
button.click(vectors, inputs=[sim_text1,
sim_text2, model_input], outputs=sim_output)
button.click(
span, inputs=[text_input, span1, span2, label1, label2, model_input], outputs=span_output)
dep_button.click(dependency, inputs=[
text_input, col_punct, col_phrase, compact, bg, text, model_input], outputs=depen_output)
ent_button.click(
entity, inputs=[text_input, entity_input, model_input], outputs=entity_output)
tok_button.click(
token, inputs=[text_input, tok_input, model_input], outputs=[tok_output])
sim_button.click(vectors, inputs=[
sim_text1, sim_text2, model_input], outputs=sim_output)
span_button.click(
span, inputs=[text_input, span1, span2, label1, label2, model_input], outputs=span_output)
sim_random_button.click(random_vectors, inputs=[text_input, model_input], outputs=[
sim_output, sim_text1, sim_text2])
demo.launch()