Spaces:
Runtime error
Runtime error
import spacy | |
from spacy import displacy | |
import random | |
from spacy.tokens import Span | |
import gradio as gr | |
DEFAULT_MODEL = "en_core_web" | |
DEFAULT_TEXT = "Apple is looking at buying U.K. startup for $1 billion." | |
DEFAULT_TOK_ATTR = ['idx', 'text', 'pos_', 'lemma_', 'shape_', 'dep_'] | |
DEFAULT_ENTS = ['CARDINAL', 'DATE', 'EVENT', 'FAC', 'GPE', 'LANGUAGE', 'LAW', 'LOC', 'MONEY', | |
'NORP', 'ORDINAL', 'ORG', 'PERCENT', 'PERSON', 'PRODUCT', 'QUANTITY', 'TIME', 'WORK_OF_ART'] | |
texts = {"en": DEFAULT_TEXT, "ca": "Apple està buscant comprar una startup del Regne Unit per mil milions de dòlars", "da": "Apple overvejer at købe et britisk startup for 1 milliard dollar.", "de": "Die ganze Stadt ist ein Startup: Shenzhen ist das Silicon Valley für Hardware-Firmen", | |
"el": "Η άνιση κατανομή του πλούτου και του εισοδήματος, η οποία έχει λάβει τρομερές διαστάσεις, δεν δείχνει τάσεις βελτίωσης.", "es": "Apple está buscando comprar una startup del Reino Unido por mil millones de dólares.", "fi": "Itseajavat autot siirtävät vakuutusvastuun autojen valmistajille", "fr": "Apple cherche à acheter une start-up anglaise pour 1 milliard de dollars", "it": "Apple vuole comprare una startup del Regno Unito per un miliardo di dollari", | |
"ja": "アップルがイギリスの新興企業を10億ドルで購入を検討", "ko": "애플이 영국의 스타트업을 10억 달러에 인수하는 것을 알아보고 있다.", "lt": "Jaunikis pirmąją vestuvinę naktį iškeitė į areštinės gultą", "nb": "Apple vurderer å kjøpe britisk oppstartfirma for en milliard dollar.", "nl": "Apple overweegt om voor 1 miljard een U.K. startup te kopen", | |
"pl": "Poczuł przyjemną woń mocnej kawy.", "pt": "Apple está querendo comprar uma startup do Reino Unido por 100 milhões de dólares", "ro": "Apple plănuiește să cumpere o companie britanică pentru un miliard de dolari", "ru": "Apple рассматривает возможность покупки стартапа из Соединённого Королевства за $1 млрд", "sv": "Apple överväger att köpa brittisk startup för 1 miljard dollar.", "zh": "作为语言而言,为世界使用人数最多的语言,目前世界有五分之一人口做为母语。"} | |
def get_all_models(): | |
with open("requirements.txt") as f: | |
content = f.readlines() | |
models = [] | |
for line in content: | |
if "huggingface.co" in line: | |
model = "_".join(line.split("/")[4].split("_")[:3]) | |
if model not in models: | |
models.append(model) | |
return models | |
models = get_all_models() | |
def dependency(text, col_punct, col_phrase, compact, model): | |
nlp = spacy.load(model + "_sm") | |
doc = nlp(text) | |
options = {"compact": compact, "collapse_phrases": col_phrase, | |
"collapse_punct": col_punct} | |
html = displacy.render(doc, style="dep", options=options) | |
return html | |
def entity(text, ents, model): | |
nlp = spacy.load(model + "_sm") | |
doc = nlp(text) | |
options = {"ents": ents} | |
html = displacy.render(doc, style="ent", options=options) | |
return html | |
def token(text, attributes, model): | |
nlp = spacy.load(model + "_sm") | |
data = [] | |
doc = nlp(text) | |
for tok in doc: | |
tok_data = [] | |
for attr in attributes: | |
tok_data.append(getattr(tok, attr)) | |
data.append(tok_data) | |
return data | |
def vectors(text, model): | |
nlp = spacy.load(model + "_md") | |
doc = nlp(text) | |
n_chunks = [chunk for chunk in doc.noun_chunks] | |
words = [tok for tok in doc if not tok.is_stop and tok.pos_ not in [ | |
'PUNCT', "PROPN"]] | |
str_list = n_chunks + words | |
choice = random.choices(str_list, k=2) | |
return round(choice[0].similarity(choice[1]), 2), choice[0].text, choice[1].text | |
def span(text, span1, span2, label1, label2, model): | |
nlp = spacy.load(model + "_sm") | |
doc = nlp(text) | |
if span1: | |
idx1_1 = 0 | |
idx1_2 = 0 | |
idx2_1 = 0 | |
idx2_2 = 0 | |
span1 = span1.split(" ") | |
span2 = span2.split(" ") | |
for i in range(len(list(doc))): | |
tok = list(doc)[i] | |
if span1[0] == tok.text: | |
idx1_1 = i | |
if span1[-1] == tok.text: | |
idx1_2 = i + 1 | |
if span2[0] == tok.text: | |
idx2_1 = i | |
if span2[-1] == tok.text: | |
idx2_2 = i + 1 | |
doc.spans["sc"] = [ | |
Span(doc, idx1_1, idx1_2, label1), | |
Span(doc, idx2_1, idx2_2, label2), | |
] | |
else: | |
idx1_1 = 0 | |
idx1_2 = round(len(list(doc)) / 2) | |
idx2_1 = 0 | |
idx2_2 = 1 | |
doc.spans["sc"] = [ | |
Span(doc, idx1_1, idx1_2, label1), | |
Span(doc, idx2_1, idx2_2, label2), | |
] | |
html = displacy.render(doc, style="span") | |
return html | |
def get_text(model): | |
for i in range(len(models)): | |
model = model.split("_")[0] | |
new_text = texts[model] | |
return new_text | |
demo = gr.Blocks() | |
with demo: | |
model_input = gr.Dropdown( | |
choices=models, value=DEFAULT_MODEL, interactive=True) | |
text_button = gr.Button("Get new text") | |
text_input = gr.Textbox(value=DEFAULT_TEXT, interactive=True) | |
button = gr.Button("Generate") | |
with gr.Tabs(): | |
with gr.TabItem("Dependency"): | |
col_punct = gr.Checkbox(label="Collapse Punctuation", value=True) | |
col_phrase = gr.Checkbox(label="Collapse Phrases", value=True) | |
compact = gr.Checkbox(label="Compact", value=True) | |
depen_output = gr.HTML() | |
with gr.TabItem("Entity"): | |
entity_input = gr.CheckboxGroup(DEFAULT_ENTS, value=DEFAULT_ENTS) | |
entity_output = gr.HTML() | |
with gr.TabItem("Tokens"): | |
with gr.Column(): | |
tok_input = gr.CheckboxGroup( | |
DEFAULT_TOK_ATTR, value=DEFAULT_TOK_ATTR) | |
tok_output = gr.Dataframe( | |
headers=DEFAULT_TOK_ATTR, overflow_row_behaviour="paginate") | |
with gr.TabItem("Similarity"): | |
with gr.Row(): | |
sim_text1 = gr.Textbox(value="David Bowie", label="Chosen") | |
sim_text2 = gr.Textbox(value="the US", label="Chosen") | |
sim_output = gr.Textbox(value="0.09", label="Similarity Score") | |
with gr.TabItem("Spans"): | |
with gr.Column(): | |
with gr.Row(): | |
span1 = gr.Textbox(label="Span 1") | |
label1 = gr.Textbox(value="Label 1", | |
label="Label for Span 1") | |
with gr.Row(): | |
span2 = gr.Textbox(label="Span 2") | |
label2 = gr.Textbox(value="Label 2", | |
label="Label for Span 2") | |
with gr.Row(): | |
span_output = gr.HTML() | |
text_button.click(get_text, inputs=[model_input], outputs=text_input) | |
button.click(dependency, inputs=[ | |
text_input, col_punct, col_phrase, compact, model_input], outputs=depen_output) | |
button.click( | |
entity, inputs=[text_input, entity_input, model_input], outputs=entity_output) | |
button.click( | |
token, inputs=[text_input, tok_input, model_input], outputs=tok_output) | |
button.click(vectors, inputs=[text_input, model_input], outputs=[ | |
sim_output, sim_text1, sim_text2]) | |
button.click( | |
span, inputs=[text_input, span1, span2, label1, label2, model_input], outputs=span_output) | |
demo.launch() | |