Victoria Slocum
Fix:model stuff
32163e9
raw
history blame
7.66 kB
import spacy
from spacy import displacy
import random
from spacy.tokens import Span
import gradio as gr
DEFAULT_MODEL = "en_core_web"
DEFAULT_TEXT = "Apple is looking at buying U.K. startup for $1 billion."
DEFAULT_TOK_ATTR = ['idx', 'text', 'pos_', 'lemma_', 'shape_', 'dep_']
DEFAULT_ENTS = ['CARDINAL', 'DATE', 'EVENT', 'FAC', 'GPE', 'LANGUAGE', 'LAW', 'LOC', 'MONEY',
'NORP', 'ORDINAL', 'ORG', 'PERCENT', 'PERSON', 'PRODUCT', 'QUANTITY', 'TIME', 'WORK_OF_ART']
texts = {"en": DEFAULT_TEXT, "ca": "Apple està buscant comprar una startup del Regne Unit per mil milions de dòlars", "da": "Apple overvejer at købe et britisk startup for 1 milliard dollar.", "de": "Die ganze Stadt ist ein Startup: Shenzhen ist das Silicon Valley für Hardware-Firmen",
"el": "Η άνιση κατανομή του πλούτου και του εισοδήματος, η οποία έχει λάβει τρομερές διαστάσεις, δεν δείχνει τάσεις βελτίωσης.", "es": "Apple está buscando comprar una startup del Reino Unido por mil millones de dólares.", "fi": "Itseajavat autot siirtävät vakuutusvastuun autojen valmistajille", "fr": "Apple cherche à acheter une start-up anglaise pour 1 milliard de dollars", "it": "Apple vuole comprare una startup del Regno Unito per un miliardo di dollari",
"ja": "アップルがイギリスの新興企業を10億ドルで購入を検討", "ko": "애플이 영국의 스타트업을 10억 달러에 인수하는 것을 알아보고 있다.", "lt": "Jaunikis pirmąją vestuvinę naktį iškeitė į areštinės gultą", "nb": "Apple vurderer å kjøpe britisk oppstartfirma for en milliard dollar.", "nl": "Apple overweegt om voor 1 miljard een U.K. startup te kopen",
"pl": "Poczuł przyjemną woń mocnej kawy.", "pt": "Apple está querendo comprar uma startup do Reino Unido por 100 milhões de dólares", "ro": "Apple plănuiește să cumpere o companie britanică pentru un miliard de dolari", "ru": "Apple рассматривает возможность покупки стартапа из Соединённого Королевства за $1 млрд", "sv": "Apple överväger att köpa brittisk startup för 1 miljard dollar.", "zh": "作为语言而言,为世界使用人数最多的语言,目前世界有五分之一人口做为母语。"}
def get_all_models():
with open("requirements.txt") as f:
content = f.readlines()
models = []
for line in content:
if "huggingface.co" in line:
model = "_".join(line.split("/")[4].split("_")[:3])
if model not in models:
models.append(model)
return models
models = get_all_models()
def dependency(text, col_punct, col_phrase, compact, model):
nlp = spacy.load(model + "_sm")
doc = nlp(text)
options = {"compact": compact, "collapse_phrases": col_phrase,
"collapse_punct": col_punct}
html = displacy.render(doc, style="dep", options=options)
return html
def entity(text, ents, model):
nlp = spacy.load(model + "_sm")
doc = nlp(text)
options = {"ents": ents}
html = displacy.render(doc, style="ent", options=options)
return html
def token(text, attributes, model):
nlp = spacy.load(model + "_sm")
data = []
doc = nlp(text)
for tok in doc:
tok_data = []
for attr in attributes:
tok_data.append(getattr(tok, attr))
data.append(tok_data)
return data
def vectors(text, model):
nlp = spacy.load(model + "_md")
doc = nlp(text)
n_chunks = [chunk for chunk in doc.noun_chunks]
words = [tok for tok in doc if not tok.is_stop and tok.pos_ not in [
'PUNCT', "PROPN"]]
str_list = n_chunks + words
choice = random.choices(str_list, k=2)
return round(choice[0].similarity(choice[1]), 2), choice[0].text, choice[1].text
def span(text, span1, span2, label1, label2, model):
nlp = spacy.load(model + "_sm")
doc = nlp(text)
if span1:
idx1_1 = 0
idx1_2 = 0
idx2_1 = 0
idx2_2 = 0
span1 = span1.split(" ")
span2 = span2.split(" ")
for i in range(len(list(doc))):
tok = list(doc)[i]
if span1[0] == tok.text:
idx1_1 = i
if span1[-1] == tok.text:
idx1_2 = i + 1
if span2[0] == tok.text:
idx2_1 = i
if span2[-1] == tok.text:
idx2_2 = i + 1
doc.spans["sc"] = [
Span(doc, idx1_1, idx1_2, label1),
Span(doc, idx2_1, idx2_2, label2),
]
else:
idx1_1 = 0
idx1_2 = round(len(list(doc)) / 2)
idx2_1 = 0
idx2_2 = 1
doc.spans["sc"] = [
Span(doc, idx1_1, idx1_2, label1),
Span(doc, idx2_1, idx2_2, label2),
]
html = displacy.render(doc, style="span")
return html
def get_text(model):
for i in range(len(models)):
model = model.split("_")[0]
new_text = texts[model]
return new_text
demo = gr.Blocks()
with demo:
model_input = gr.Dropdown(
choices=models, value=DEFAULT_MODEL, interactive=True)
text_button = gr.Button("Get new text")
text_input = gr.Textbox(value=DEFAULT_TEXT, interactive=True)
button = gr.Button("Generate")
with gr.Tabs():
with gr.TabItem("Dependency"):
col_punct = gr.Checkbox(label="Collapse Punctuation", value=True)
col_phrase = gr.Checkbox(label="Collapse Phrases", value=True)
compact = gr.Checkbox(label="Compact", value=True)
depen_output = gr.HTML()
with gr.TabItem("Entity"):
entity_input = gr.CheckboxGroup(DEFAULT_ENTS, value=DEFAULT_ENTS)
entity_output = gr.HTML()
with gr.TabItem("Tokens"):
with gr.Column():
tok_input = gr.CheckboxGroup(
DEFAULT_TOK_ATTR, value=DEFAULT_TOK_ATTR)
tok_output = gr.Dataframe(
headers=DEFAULT_TOK_ATTR, overflow_row_behaviour="paginate")
with gr.TabItem("Similarity"):
with gr.Row():
sim_text1 = gr.Textbox(value="David Bowie", label="Chosen")
sim_text2 = gr.Textbox(value="the US", label="Chosen")
sim_output = gr.Textbox(value="0.09", label="Similarity Score")
with gr.TabItem("Spans"):
with gr.Column():
with gr.Row():
span1 = gr.Textbox(label="Span 1")
label1 = gr.Textbox(value="Label 1",
label="Label for Span 1")
with gr.Row():
span2 = gr.Textbox(label="Span 2")
label2 = gr.Textbox(value="Label 2",
label="Label for Span 2")
with gr.Row():
span_output = gr.HTML()
text_button.click(get_text, inputs=[model_input], outputs=text_input)
button.click(dependency, inputs=[
text_input, col_punct, col_phrase, compact, model_input], outputs=depen_output)
button.click(
entity, inputs=[text_input, entity_input, model_input], outputs=entity_output)
button.click(
token, inputs=[text_input, tok_input, model_input], outputs=tok_output)
button.click(vectors, inputs=[text_input, model_input], outputs=[
sim_output, sim_text1, sim_text2])
button.click(
span, inputs=[text_input, span1, span2, label1, label2, model_input], outputs=span_output)
demo.launch()