Spaces:
Runtime error
Runtime error
Victoria Slocum
commited on
Commit
•
a83d8ed
1
Parent(s):
7991260
fixes
Browse files
app.py
CHANGED
@@ -10,13 +10,12 @@ DEFAULT_TEXT = "Apple is looking at buying U.K. startup for $1 billion."
|
|
10 |
DEFAULT_TOK_ATTR = ['idx', 'text', 'pos_', 'lemma_', 'shape_', 'dep_']
|
11 |
DEFAULT_ENTS = ['CARDINAL', 'DATE', 'EVENT', 'FAC', 'GPE', 'LANGUAGE', 'LAW', 'LOC', 'MONEY',
|
12 |
'NORP', 'ORDINAL', 'ORG', 'PERCENT', 'PERSON', 'PRODUCT', 'QUANTITY', 'TIME', 'WORK_OF_ART']
|
13 |
-
|
14 |
texts = {"en": DEFAULT_TEXT, "ca": "Apple està buscant comprar una startup del Regne Unit per mil milions de dòlars", "da": "Apple overvejer at købe et britisk startup for 1 milliard dollar.", "de": "Die ganze Stadt ist ein Startup: Shenzhen ist das Silicon Valley für Hardware-Firmen",
|
15 |
"el": "Η άνιση κατανομή του πλούτου και του εισοδήματος, η οποία έχει λάβει τρομερές διαστάσεις, δεν δείχνει τάσεις βελτίωσης.", "es": "Apple está buscando comprar una startup del Reino Unido por mil millones de dólares.", "fi": "Itseajavat autot siirtävät vakuutusvastuun autojen valmistajille", "fr": "Apple cherche à acheter une start-up anglaise pour 1 milliard de dollars", "it": "Apple vuole comprare una startup del Regno Unito per un miliardo di dollari",
|
16 |
"ja": "アップルがイギリスの新興企業を10億ドルで購入を検討", "ko": "애플이 영국의 스타트업을 10억 달러에 인수하는 것을 알아보고 있다.", "lt": "Jaunikis pirmąją vestuvinę naktį iškeitė į areštinės gultą", "nb": "Apple vurderer å kjøpe britisk oppstartfirma for en milliard dollar.", "nl": "Apple overweegt om voor 1 miljard een U.K. startup te kopen",
|
17 |
"pl": "Poczuł przyjemną woń mocnej kawy.", "pt": "Apple está querendo comprar uma startup do Reino Unido por 100 milhões de dólares", "ro": "Apple plănuiește să cumpere o companie britanică pentru un miliard de dolari", "ru": "Apple рассматривает возможность покупки стартапа из Соединённого Королевства за $1 млрд", "sv": "Apple överväger att köpa brittisk startup för 1 miljard dollar.", "zh": "作为语言而言,为世界使用人数最多的语言,目前世界有五分之一人口做为母语。"}
|
18 |
|
19 |
-
|
20 |
def get_all_models():
|
21 |
with open("requirements.txt") as f:
|
22 |
content = f.readlines()
|
@@ -32,11 +31,11 @@ def get_all_models():
|
|
32 |
models = get_all_models()
|
33 |
|
34 |
|
35 |
-
def dependency(text, col_punct, col_phrase, compact, model):
|
36 |
nlp = spacy.load(model + "_sm")
|
37 |
doc = nlp(text)
|
38 |
options = {"compact": compact, "collapse_phrases": col_phrase,
|
39 |
-
"collapse_punct": col_punct}
|
40 |
html = displacy.render(doc, style="dep", options=options)
|
41 |
return html
|
42 |
|
@@ -150,13 +149,13 @@ with demo:
|
|
150 |
model_input = gr.Dropdown(
|
151 |
choices=models, value=DEFAULT_MODEL, interactive=True, label="Pretrained Pipelines")
|
152 |
with gr.Column():
|
153 |
-
gr.
|
154 |
with gr.Column():
|
155 |
gr.Markdown("")
|
156 |
with gr.Column():
|
157 |
gr.Markdown("")
|
158 |
|
159 |
-
|
160 |
with gr.Row():
|
161 |
with gr.Column():
|
162 |
text_input = gr.Textbox(
|
@@ -168,21 +167,30 @@ with demo:
|
|
168 |
with gr.Tabs():
|
169 |
with gr.TabItem(""):
|
170 |
with gr.Column():
|
171 |
-
gr.Markdown("
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
dep_button = gr.Button("Generate Dependency Parser")
|
|
|
177 |
with gr.Box():
|
178 |
with gr.Column():
|
179 |
-
gr.Markdown("
|
180 |
entity_input = gr.CheckboxGroup(DEFAULT_ENTS, value=DEFAULT_ENTS)
|
181 |
entity_output = gr.HTML(value=entity(DEFAULT_TEXT, DEFAULT_ENTS, DEFAULT_MODEL))
|
182 |
ent_button = gr.Button("Generate Entity Recognizer")
|
183 |
with gr.Box():
|
184 |
with gr.Column():
|
185 |
-
gr.Markdown("
|
186 |
with gr.Column():
|
187 |
tok_input = gr.CheckboxGroup(
|
188 |
DEFAULT_TOK_ATTR, value=DEFAULT_TOK_ATTR)
|
@@ -190,7 +198,7 @@ with demo:
|
|
190 |
tok_button = gr.Button("Generate Token Properties")
|
191 |
with gr.Box():
|
192 |
with gr.Column():
|
193 |
-
gr.Markdown("
|
194 |
with gr.Row():
|
195 |
sim_text1 = gr.Textbox(
|
196 |
value="Apple", label="Word 1", interactive=True,)
|
@@ -201,7 +209,7 @@ with demo:
|
|
201 |
sim_button = gr.Button("Generate similarity")
|
202 |
with gr.Box():
|
203 |
with gr.Column():
|
204 |
-
gr.Markdown("
|
205 |
with gr.Column():
|
206 |
with gr.Row():
|
207 |
span1 = gr.Textbox(
|
@@ -220,7 +228,7 @@ with demo:
|
|
220 |
|
221 |
text_button.click(get_text, inputs=[model_input], outputs=text_input)
|
222 |
button.click(dependency, inputs=[
|
223 |
-
text_input, col_punct, col_phrase, compact, model_input], outputs=depen_output)
|
224 |
button.click(
|
225 |
entity, inputs=[text_input, entity_input, model_input], outputs=entity_output)
|
226 |
button.click(
|
@@ -230,7 +238,7 @@ with demo:
|
|
230 |
button.click(
|
231 |
span, inputs=[text_input, span1, span2, label1, label2, model_input], outputs=span_output)
|
232 |
dep_button.click(dependency, inputs=[
|
233 |
-
text_input, col_punct, col_phrase, compact, model_input], outputs=depen_output)
|
234 |
ent_button.click(
|
235 |
entity, inputs=[text_input, entity_input, model_input], outputs=entity_output)
|
236 |
tok_button.click(
|
|
|
10 |
DEFAULT_TOK_ATTR = ['idx', 'text', 'pos_', 'lemma_', 'shape_', 'dep_']
|
11 |
DEFAULT_ENTS = ['CARDINAL', 'DATE', 'EVENT', 'FAC', 'GPE', 'LANGUAGE', 'LAW', 'LOC', 'MONEY',
|
12 |
'NORP', 'ORDINAL', 'ORG', 'PERCENT', 'PERSON', 'PRODUCT', 'QUANTITY', 'TIME', 'WORK_OF_ART']
|
13 |
+
DEFAULT_COLOR = "linear-gradient(90deg, #FFCA74, #7AECEC)"
|
14 |
texts = {"en": DEFAULT_TEXT, "ca": "Apple està buscant comprar una startup del Regne Unit per mil milions de dòlars", "da": "Apple overvejer at købe et britisk startup for 1 milliard dollar.", "de": "Die ganze Stadt ist ein Startup: Shenzhen ist das Silicon Valley für Hardware-Firmen",
|
15 |
"el": "Η άνιση κατανομή του πλούτου και του εισοδήματος, η οποία έχει λάβει τρομερές διαστάσεις, δεν δείχνει τάσεις βελτίωσης.", "es": "Apple está buscando comprar una startup del Reino Unido por mil millones de dólares.", "fi": "Itseajavat autot siirtävät vakuutusvastuun autojen valmistajille", "fr": "Apple cherche à acheter une start-up anglaise pour 1 milliard de dollars", "it": "Apple vuole comprare una startup del Regno Unito per un miliardo di dollari",
|
16 |
"ja": "アップルがイギリスの新興企業を10億ドルで購入を検討", "ko": "애플이 영국의 스타트업을 10억 달러에 인수하는 것을 알아보고 있다.", "lt": "Jaunikis pirmąją vestuvinę naktį iškeitė į areštinės gultą", "nb": "Apple vurderer å kjøpe britisk oppstartfirma for en milliard dollar.", "nl": "Apple overweegt om voor 1 miljard een U.K. startup te kopen",
|
17 |
"pl": "Poczuł przyjemną woń mocnej kawy.", "pt": "Apple está querendo comprar uma startup do Reino Unido por 100 milhões de dólares", "ro": "Apple plănuiește să cumpere o companie britanică pentru un miliard de dolari", "ru": "Apple рассматривает возможность покупки стартапа из Соединённого Королевства за $1 млрд", "sv": "Apple överväger att köpa brittisk startup för 1 miljard dollar.", "zh": "作为语言而言,为世界使用人数最多的语言,目前世界有五分之一人口做为母语。"}
|
18 |
|
|
|
19 |
def get_all_models():
|
20 |
with open("requirements.txt") as f:
|
21 |
content = f.readlines()
|
|
|
31 |
models = get_all_models()
|
32 |
|
33 |
|
34 |
+
def dependency(text, col_punct, col_phrase, compact, bg, font, model):
|
35 |
nlp = spacy.load(model + "_sm")
|
36 |
doc = nlp(text)
|
37 |
options = {"compact": compact, "collapse_phrases": col_phrase,
|
38 |
+
"collapse_punct": col_punct, "bg": bg, "color":font}
|
39 |
html = displacy.render(doc, style="dep", options=options)
|
40 |
return html
|
41 |
|
|
|
149 |
model_input = gr.Dropdown(
|
150 |
choices=models, value=DEFAULT_MODEL, interactive=True, label="Pretrained Pipelines")
|
151 |
with gr.Column():
|
152 |
+
text_button = gr.Button("Get text in model language")
|
153 |
with gr.Column():
|
154 |
gr.Markdown("")
|
155 |
with gr.Column():
|
156 |
gr.Markdown("")
|
157 |
|
158 |
+
|
159 |
with gr.Row():
|
160 |
with gr.Column():
|
161 |
text_input = gr.Textbox(
|
|
|
167 |
with gr.Tabs():
|
168 |
with gr.TabItem(""):
|
169 |
with gr.Column():
|
170 |
+
gr.Markdown("## [Dependency Parser](https://spacy.io/usage/visualizers#dep)")
|
171 |
+
with gr.Row():
|
172 |
+
with gr.Column():
|
173 |
+
col_punct = gr.Checkbox(label="Collapse Punctuation", value=True)
|
174 |
+
col_phrase = gr.Checkbox(label="Collapse Phrases", value=True)
|
175 |
+
compact = gr.Checkbox(label="Compact", value=False)
|
176 |
+
with gr.Column():
|
177 |
+
bg = gr.Textbox(label="Background Color", value=DEFAULT_COLOR)
|
178 |
+
with gr.Column():
|
179 |
+
text = gr.Textbox(label="Text Color", value="black")
|
180 |
+
with gr.Column():
|
181 |
+
gr.Markdown("")
|
182 |
+
depen_output = gr.HTML(value=dependency(DEFAULT_TEXT, True, True, False, DEFAULT_COLOR, "black", DEFAULT_MODEL))
|
183 |
dep_button = gr.Button("Generate Dependency Parser")
|
184 |
+
gr.Markdown("\n\n\n")
|
185 |
with gr.Box():
|
186 |
with gr.Column():
|
187 |
+
gr.Markdown("## [Entity Recognizer](https://spacy.io/usage/visualizers#ent)")
|
188 |
entity_input = gr.CheckboxGroup(DEFAULT_ENTS, value=DEFAULT_ENTS)
|
189 |
entity_output = gr.HTML(value=entity(DEFAULT_TEXT, DEFAULT_ENTS, DEFAULT_MODEL))
|
190 |
ent_button = gr.Button("Generate Entity Recognizer")
|
191 |
with gr.Box():
|
192 |
with gr.Column():
|
193 |
+
gr.Markdown("## [Token Properties](https://spacy.io/usage/linguistic-features)")
|
194 |
with gr.Column():
|
195 |
tok_input = gr.CheckboxGroup(
|
196 |
DEFAULT_TOK_ATTR, value=DEFAULT_TOK_ATTR)
|
|
|
198 |
tok_button = gr.Button("Generate Token Properties")
|
199 |
with gr.Box():
|
200 |
with gr.Column():
|
201 |
+
gr.Markdown("## [Word and Phrase Similarity](https://spacy.io/usage/linguistic-features#vectors-similarity)")
|
202 |
with gr.Row():
|
203 |
sim_text1 = gr.Textbox(
|
204 |
value="Apple", label="Word 1", interactive=True,)
|
|
|
209 |
sim_button = gr.Button("Generate similarity")
|
210 |
with gr.Box():
|
211 |
with gr.Column():
|
212 |
+
gr.Markdown("## [Spans](https://spacy.io/usage/visualizers#span)")
|
213 |
with gr.Column():
|
214 |
with gr.Row():
|
215 |
span1 = gr.Textbox(
|
|
|
228 |
|
229 |
text_button.click(get_text, inputs=[model_input], outputs=text_input)
|
230 |
button.click(dependency, inputs=[
|
231 |
+
text_input, col_punct, col_phrase, compact, bg, text, model_input], outputs=depen_output)
|
232 |
button.click(
|
233 |
entity, inputs=[text_input, entity_input, model_input], outputs=entity_output)
|
234 |
button.click(
|
|
|
238 |
button.click(
|
239 |
span, inputs=[text_input, span1, span2, label1, label2, model_input], outputs=span_output)
|
240 |
dep_button.click(dependency, inputs=[
|
241 |
+
text_input, col_punct, col_phrase, compact, bg, text, model_input], outputs=depen_output)
|
242 |
ent_button.click(
|
243 |
entity, inputs=[text_input, entity_input, model_input], outputs=entity_output)
|
244 |
tok_button.click(
|