from turtle import down
import spacy
from spacy import displacy
import random
from spacy.tokens import Span
import gradio as gr
import pandas as pd
import cairosvg
import base64
DEFAULT_MODEL = "en_core_web"
DEFAULT_TEXT = "Apple is looking at buying U.K. startup for $1 billion."
DEFAULT_TOK_ATTR = ['idx', 'text', 'pos_', 'lemma_', 'shape_', 'dep_']
DEFAULT_ENTS = ['CARDINAL', 'DATE', 'EVENT', 'FAC', 'GPE', 'LANGUAGE', 'LAW', 'LOC', 'MONEY',
'NORP', 'ORDINAL', 'ORG', 'PERCENT', 'PERSON', 'PRODUCT', 'QUANTITY', 'TIME', 'WORK_OF_ART']
DEFAULT_COLOR = "linear-gradient(90deg, #FFCA74, #7AECEC)"
texts = {"en": DEFAULT_TEXT, "ca": "Apple està buscant comprar una startup del Regne Unit per mil milions de dòlars", "da": "Apple overvejer at købe et britisk startup for 1 milliard dollar.", "de": "Die ganze Stadt ist ein Startup: Shenzhen ist das Silicon Valley für Hardware-Firmen",
"el": "Η άνιση κατανομή του πλούτου και του εισοδήματος, η οποία έχει λάβει τρομερές διαστάσεις, δεν δείχνει τάσεις βελτίωσης.", "es": "Apple está buscando comprar una startup del Reino Unido por mil millones de dólares.", "fi": "Itseajavat autot siirtävät vakuutusvastuun autojen valmistajille", "fr": "Apple cherche à acheter une start-up anglaise pour 1 milliard de dollars", "it": "Apple vuole comprare una startup del Regno Unito per un miliardo di dollari",
"ja": "アップルがイギリスの新興企業を10億ドルで購入を検討", "ko": "애플이 영국의 스타트업을 10억 달러에 인수하는 것을 알아보고 있다.", "lt": "Jaunikis pirmąją vestuvinę naktį iškeitė į areštinės gultą", "nb": "Apple vurderer å kjøpe britisk oppstartfirma for en milliard dollar.", "nl": "Apple overweegt om voor 1 miljard een U.K. startup te kopen",
"pl": "Poczuł przyjemną woń mocnej kawy.", "pt": "Apple está querendo comprar uma startup do Reino Unido por 100 milhões de dólares", "ro": "Apple plănuiește să cumpere o companie britanică pentru un miliard de dolari", "ru": "Apple рассматривает возможность покупки стартапа из Соединённого Королевства за $1 млрд", "sv": "Apple överväger att köpa brittisk startup för 1 miljard dollar.", "zh": "作为语言而言,为世界使用人数最多的语言,目前世界有五分之一人口做为母语。"}
button_css = "--tw-border-opacity: 1; border-color: rgb(75 85 99 / var(--tw-border-opacity)); --tw-gradient-from: #4b5563; --tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to, rgb(75 85 99 / 0));--tw-gradient-to: #374151; --tw-text-opacity: 1; color: rgb(255 255 255 / var(--tw-text-opacity)); background-color: rgb(55 65 81 / var(--tw-bg-opacity)); border-radius: 0.5rem; padding-top: 0.5rem; padding-bottom: 0.5rem; padding-left: 1rem; padding-right: 1rem; font-size: 1rem; line-height: 1.5rem; font-weight: 600; -webkit-appearance: button; --tw-shadow: 0 1px 2px 0 rgb(0 0 0 / 0.05); --tw-shadow-colored: 0 1px 2px 0 var(--tw-shadow-color); box-shadow: var(--tw-ring-offset-shadow, 0 0 #0000), var(--tw-ring-shadow, 0 0 #0000), var(--tw-shadow); border-width: 1px; align-items: center; justify-content: center; display: inline-flex;"
def get_all_models():
with open("requirements.txt") as f:
content = f.readlines()
models = []
for line in content:
if "huggingface.co" in line:
model = "_".join(line.split("/")[4].split("_")[:3])
if model not in models:
models.append(model)
return models
models = get_all_models()
def download_svg(svg):
encode = base64.b64encode(bytes(svg, 'utf-8'))
img = 'data:image/svg+xml;base64,' + str(encode)[2:-1]
html = f'Download as SVG'
return html
# def download_png(svg):
# encode = base64.b64encode(bytes(svg, 'utf-8'))
# svg_uri = 'data:image/svg+xml;base64,' + str(encode)[2:-1]
# output = cairosvg.svg2png(url=svg_uri)
# encoded = base64.b64encode(output)
# img = 'data:image/png;base64,' + str(encoded)[2:-1]
# html = f'Download as PNG'
# return html
# def download(type, svg):
# if type == 'png':
# return download_png(svg)
# elif type == 'svg':
# return download_svg(svg)
def dependency(text, col_punct, col_phrase, compact, bg, font, model):
nlp = spacy.load(model + "_sm")
doc = nlp(text)
options = {"compact": compact, "collapse_phrases": col_phrase,
"collapse_punct": col_punct, "bg": bg, "color": font}
svg = displacy.render(doc, style="dep", options=options)
download = download_svg(svg)
return svg, download
def entity(text, ents, model):
nlp = spacy.load(model + "_sm")
doc = nlp(text)
options = {"ents": ents}
svg = displacy.render(doc, style="ent", options=options)
# download = download_svg('")
return svg
def token(text, attributes, model):
nlp = spacy.load(model + "_sm")
data = []
doc = nlp(text)
for tok in doc:
tok_data = []
for attr in attributes:
tok_data.append(getattr(tok, attr))
data.append(tok_data)
data = pd.DataFrame(data, columns=attributes)
return data
def default_token(text, attributes, model):
nlp = spacy.load(model + "_sm")
data = []
doc = nlp(text)
for tok in doc:
tok_data = []
for attr in attributes:
tok_data.append(getattr(tok, attr))
data.append(tok_data)
return data
def random_vectors(text, model):
nlp = spacy.load(model + "_md")
doc = nlp(text)
n_chunks = [chunk for chunk in doc.noun_chunks if doc.noun_chunks]
words = [tok for tok in doc if not tok.is_stop and tok.pos_ not in [
'PUNCT', "PROPN"]]
str_list = n_chunks + words
choice = random.choices(str_list, k=2)
return round(choice[0].similarity(choice[1]), 2), choice[0].text, choice[1].text
def vectors(input1, input2, model):
nlp = spacy.load(model + "_md")
return round(nlp(input1).similarity(nlp(input2)), 2)
def span(text, span1, span2, label1, label2, model):
nlp = spacy.load(model + "_sm")
doc = nlp(text)
if span1:
idx1_1 = 0
idx1_2 = 0
idx2_1 = 0
idx2_2 = 0
span1 = [split for split in span1.split(" ") if split]
span2 = [split for split in span2.split(" ") if split]
for i in range(len(list(doc))):
tok = list(doc)[i]
if span1[0] == tok.text:
idx1_1 = i
if span1[-1] == tok.text:
idx1_2 = i + 1
if span2[0] == tok.text:
idx2_1 = i
if span2[-1] == tok.text:
idx2_2 = i + 1
doc.spans["sc"] = [
Span(doc, idx1_1, idx1_2, label1),
Span(doc, idx2_1, idx2_2, label2),
]
else:
idx1_1 = 0
idx1_2 = round(len(list(doc)) / 2)
idx2_1 = 0
idx2_2 = 1
doc.spans["sc"] = [
Span(doc, idx1_1, idx1_2, label1),
Span(doc, idx2_1, idx2_2, label2),
]
svg = displacy.render(doc, style="span")
# download = download_svg(svg)
return svg
def get_text(model):
for i in range(len(models)):
model = model.split("_")[0]
new_text = texts[model]
return new_text
demo = gr.Blocks(css="scrollbar.css")
with demo:
with gr.Box():
with gr.Row():
with gr.Column():
gr.Markdown("# Pipeline Visualizer")
gr.Markdown(
"### Visualize parts of the spaCy pipeline in an interactive demo.")
with gr.Column():
gr.Image("pipeline.svg")
with gr.Box():
with gr.Column():
gr.Markdown(" ## Choose a language model and text")
with gr.Row():
with gr.Column():
model_input = gr.Dropdown(
choices=models, value=DEFAULT_MODEL, interactive=True, label="Pretrained Pipelines")
with gr.Column():
gr.Markdown("")
with gr.Column():
gr.Markdown("")
with gr.Column():
gr.Markdown("")
with gr.Row():
with gr.Column():
text_input = gr.Textbox(
value=DEFAULT_TEXT, interactive=True, label="Input Text")
with gr.Column():
gr.Markdown("")
button = gr.Button("Generate", variant="primary")
with gr.Tabs():
with gr.TabItem(""):
with gr.Column():
gr.Markdown(
"## [Dependency Parser](https://spacy.io/usage/visualizers#dep)")
gr.Markdown(
"The dependency visualizer shows part-of-speech tags and syntactic dependencies.")
with gr.Row():
with gr.Column():
col_punct = gr.Checkbox(
label="Collapse Punctuation", value=True)
col_phrase = gr.Checkbox(
label="Collapse Phrases", value=True)
compact = gr.Checkbox(label="Compact", value=False)
with gr.Column():
bg = gr.Textbox(
label="Background Color", value=DEFAULT_COLOR)
with gr.Column():
text = gr.Textbox(
label="Text Color", value="black")
depen_output = gr.HTML(value=dependency(
DEFAULT_TEXT, True, True, False, DEFAULT_COLOR, "black", DEFAULT_MODEL)[0])
with gr.Row():
with gr.Column():
dep_button = gr.Button("Regenerate Dependency Parser", variant="primary")
with gr.Column():
dep_download_button = gr.HTML(value=download_svg(depen_output.value))
with gr.Column():
gr.Markdown(" ")
with gr.Column():
gr.Markdown(" ")
gr.Markdown(" ")
with gr.Box():
with gr.Column():
gr.Markdown(
"## [Entity Recognizer](https://spacy.io/usage/visualizers#ent)")
gr.Markdown(
"The entity visualizer highlights named entities and their labels in a text.")
ent_input = gr.CheckboxGroup(
DEFAULT_ENTS, value=DEFAULT_ENTS)
ent_output = gr.HTML(value=entity(
DEFAULT_TEXT, DEFAULT_ENTS, DEFAULT_MODEL))
ent_button = gr.Button("Regenerate Entity Recognizer", variant="primary")
# with gr.Row():
# with gr.Column():
# ent_button = gr.Button("Regenerate Entity Recognizer", variant="primary")
# with gr.Column():
# ent_download_button = gr.HTML(value=download_svg(ent_output.value))
# with gr.Column():
# gr.Markdown(" ")
# with gr.Column():
# gr.Markdown(" ")
with gr.Box():
with gr.Column():
gr.Markdown(
"## [Token Properties](https://spacy.io/usage/linguistic-features)")
gr.Markdown(
"When you put in raw text to spaCy, it returns a Doc object with different linguistic features")
with gr.Row():
with gr.Column():
tok_input = gr.CheckboxGroup(
DEFAULT_TOK_ATTR, value=DEFAULT_TOK_ATTR)
with gr.Column():
gr.Markdown("")
tok_output = gr.Dataframe(headers=DEFAULT_TOK_ATTR, value=default_token(
DEFAULT_TEXT, DEFAULT_TOK_ATTR, DEFAULT_MODEL), overflow_row_behaviour="paginate")
tok_button = gr.Button("Regenerate Token Properties", variant="primary")
with gr.Box():
with gr.Column():
gr.Markdown(
"## [Word and Phrase Similarity](https://spacy.io/usage/linguistic-features#vectors-similarity)")
gr.Markdown(
"Words and spans have similarity ratings based off of their word vectors, or word embeddings")
with gr.Row():
with gr.Column():
sim_text1 = gr.Textbox(
value="Apple", label="Word 1", interactive=True,)
with gr.Column():
sim_text2 = gr.Textbox(
value="U.K. startup", label="Word 2", interactive=True,)
with gr.Column():
sim_output = gr.Textbox(
label="Similarity Score", value="0.12")
with gr.Column():
gr.Markdown("")
sim_random_button = gr.Button("Generate random words")
sim_button = gr.Button("Regenerate similarity", variant="primary")
with gr.Box():
with gr.Column():
gr.Markdown(
"## [Spans](https://spacy.io/usage/visualizers#span)")
gr.Markdown(
"The span visualizer highlights overlapping spans in a text.")
with gr.Row():
with gr.Column():
span1 = gr.Textbox(
label="Span 1", value="U.K. startup", placeholder="Input a part of the sentence")
with gr.Column():
label1 = gr.Textbox(value="ORG",
label="Label for Span 1")
with gr.Column():
gr.Markdown("")
with gr.Column():
gr.Markdown("")
with gr.Row():
with gr.Column():
span2 = gr.Textbox(
label="Span 2", value="U.K.", placeholder="Input another part of the sentence")
with gr.Column():
label2 = gr.Textbox(value="GPE",
label="Label for Span 2")
with gr.Column():
gr.Markdown("")
with gr.Column():
gr.Markdown("")
span_output = gr.HTML(value=span(
DEFAULT_TEXT, "U.K. startup", "U.K.", "ORG", "GPE", DEFAULT_MODEL))
span_button = gr.Button("Regenerate Spans", variant="primary")
# with gr.Row():
# with gr.Column():
# span_button = gr.Button("Regenerate Spans", variant="primary")
# with gr.Column():
# span_download_button = gr.HTML(value=download_svg(span_output.value))
# with gr.Column():
# gr.Markdown(" ")
# with gr.Column():
# gr.Markdown(" ")
model_input.change(get_text, inputs=[model_input], outputs=text_input)
button.click(dependency, inputs=[
text_input, col_punct, col_phrase, compact, bg, text, model_input], outputs=[depen_output, dep_download_button])
button.click(
entity, inputs=[text_input, ent_input, model_input], outputs=[ent_output])
button.click(
token, inputs=[text_input, tok_input, model_input], outputs=tok_output)
button.click(vectors, inputs=[sim_text1,
sim_text2, model_input], outputs=sim_output)
button.click(
span, inputs=[text_input, span1, span2, label1, label2, model_input], outputs=[span_output])
dep_button.click(dependency, inputs=[
text_input, col_punct, col_phrase, compact, bg, text, model_input], outputs=[depen_output, dep_download_button])
ent_button.click(
entity, inputs=[text_input, ent_input, model_input], outputs=[ent_output])
tok_button.click(
token, inputs=[text_input, tok_input, model_input], outputs=[tok_output])
sim_button.click(vectors, inputs=[
sim_text1, sim_text2, model_input], outputs=sim_output)
span_button.click(
span, inputs=[text_input, span1, span2, label1, label2, model_input], outputs=[span_output])
sim_random_button.click(random_vectors, inputs=[text_input, model_input], outputs=[
sim_output, sim_text1, sim_text2])
demo.launch()