|
|
|
"""Deployment.ipynb |
|
|
|
Automatically generated by Colaboratory. |
|
|
|
Original file is located at |
|
https://colab.research.google.com/drive/1RtXMnveLECPLSum0IJcSGtQTk1pGRjNE |
|
|
|
# Proof of Concept: |
|
|
|
Breakdown: |
|
|
|
1. One must first load the dataset that our group created on Mockaroo based on the guidelines given to us by the client. This dataset models a food delivery business that has 4 tables: Driver, Customer, Orders and Customer support. Each table has various types of data spanning from strings, ints to unique ids. Tables are linked by ids as well. |
|
|
|
2. Using the textblob library, we run spell checking on the user input in order to avoid any query generation issues due to misspelt words. |
|
|
|
3. We use spacy in order to run named entity recognition; these entities will be used in step 4. |
|
|
|
4. Using the named entities and a list of unique values from the dataset, we use tensorflow embeddings and cosine similarity to find the column value most likely being referenced in the user's query. For instance, an input of San Francisco Jail would have a strong cosine similarity with the actual value from the client's column: San Francisco Penitentiary. After the correct name has been found we use regex to substitute the corrected name in place of the user input. |
|
|
|
5. Finally, we do the actual query translation from plain text. We first input the formatted query and send it to openai that has already been fed the schema for the query. We then receive the SQL query and call our own hand-crafted SQL-to-MongoDB method that converts into a final MongoDB query. |
|
|
|
### User Instructions |
|
|
|
For the code to function, you need to load the four datasets (driver_data, cust_data, order_data, cust_service_data) from the github repo into your google drive as outlined in the following cells. |
|
|
|
Our main method first asks the user for their openai key. Then we have some test cases that may contain noun spelling issues, name spelling issues, etc. |
|
""" |
|
|
|
"""### **Attention**: Upload all four datasets into your MyDrive directory in google drive""" |
|
|
|
import pandas as pd |
|
import spacy |
|
import en_core_web_sm |
|
import tensorflow_hub as hub |
|
from scipy.spatial import distance |
|
from numpy.core.fromnumeric import argmax |
|
import openai |
|
import re |
|
import gradio as gr |
|
|
|
driver = pd.read_csv('driver_data.csv') |
|
customer = pd.read_csv('customer_data.csv') |
|
order = pd.read_csv('order_data.csv') |
|
service = pd.read_csv('cust_service_data.csv') |
|
|
|
"""# Entity Extraction""" |
|
|
|
|
|
|
|
nlp = spacy.load("en_core_web_sm") |
|
def EntityExtraction(text:str): |
|
|
|
entities = [] |
|
entities_label = [] |
|
label_explanation = {} |
|
doc = nlp(text) |
|
for entity in doc.ents: |
|
entities.append(entity.text) |
|
entities_label.append(entity.label_) |
|
label_explanation[entity.label_] = spacy.explain(entity.label_) |
|
return entities, entities_label |
|
|
|
"""# Column Cosine Similarity""" |
|
|
|
|
|
|
|
unique_values = {} |
|
|
|
for column in driver: |
|
unique_values[column] = driver[column].unique() |
|
|
|
for column in customer: |
|
unique_values[column] = customer[column].unique() |
|
|
|
for column in order: |
|
if column in ['cust_id', 'driver_id']: |
|
unique_values[column] = order[column].unique() |
|
|
|
unique_values['sales_id'] = service['sales_id'].unique() |
|
|
|
embed = hub.load("https://tfhub.dev/google/universal-sentence-encoder/4") |
|
|
|
|
|
|
|
def ClosestSimilarity(words): |
|
embeddings = embed(words) |
|
|
|
similarities = [1 - distance.cosine(embeddings[0],x) for x in embeddings[1:]] |
|
|
|
return max(similarities), argmax(similarities) |
|
|
|
def find_column(item, array = unique_values): |
|
|
|
best_similarity = 0 |
|
best_item = None |
|
best_key = None |
|
|
|
for key in array: |
|
values = [str(x) for x in unique_values[key]] |
|
values = [item] + values |
|
max_similarity, item_similar = ClosestSimilarity(values) |
|
if not best_similarity or max_similarity > best_similarity: |
|
|
|
best_similarity = max_similarity |
|
best_item = unique_values[key][item_similar] |
|
best_key = key |
|
|
|
if best_similarity < 0.2: |
|
|
|
return best_key, item |
|
return best_key, best_item |
|
|
|
"""# Query to SQL to MongoDB""" |
|
|
|
def query_to_SQL_to_MongoDB(query, key, organization): |
|
|
|
|
|
openai.api_key = key |
|
openai.organization = organization |
|
|
|
response = openai.Completion.create( |
|
model="text-davinci-003", |
|
prompt="### Postgres SQL tables, with their properties:\n#\n# Customer_Support(sales_id, order_id, date)\n# Driver(driver_id, driver_name, driver_address, driver_experience)\n# Customer(cust_id, cust_name, cust_address)\n# Orders(order_id, cust_id, driver_id, date, amount)\n#\n### A query to " + query + ".\nSELECT", |
|
temperature=0, |
|
max_tokens=150, |
|
top_p=1.0, |
|
frequency_penalty=0.0, |
|
presence_penalty=0.0, |
|
stop=["#", ";"] |
|
) |
|
|
|
SQL = response['choices'][0]['text'] |
|
return complex_SQL_to_MongoDB(SQL) |
|
|
|
|
|
|
|
def complex_SQL_to_MongoDB(query): |
|
|
|
keywords = {'INNER', 'FROM', 'WHERE', 'GROUP', 'BY', 'ON', 'SELECT', 'BETWEEN', 'LIMIT', 'AND', 'ORDER'} |
|
mapper = {} |
|
mapper['<'] = '$lt' |
|
mapper['>'] = '$gt' |
|
mapper['!='] = '$ne' |
|
|
|
query = re.split(r' |\n', query) |
|
query = [ x for x in query if len(x) > 0] |
|
|
|
while query[0][:3] not in ['MAX', 'MIN'] and query[0][:5] != 'COUNT' and query[0] not in keywords: |
|
|
|
query = query[1:] |
|
|
|
if query[1] == 'AS': |
|
|
|
rename = query[2] |
|
|
|
for i in range(3, len(query)): |
|
|
|
if query[i] == rename: |
|
|
|
query[i] = query[0] |
|
|
|
if len(query[0]) > 3 and (query[0][:3] == 'MAX' or query[0][:3] == 'MIN'): |
|
|
|
query += ['ORDER', 'BY', query[0][4:-1], 'DESC' if query[0][:3] == 'MAX' else 'ASC', 'LIMIT', '1'] |
|
|
|
count_str = '' |
|
|
|
if len(query[0]) > 5 and query[0][:5] == 'COUNT': |
|
|
|
count_str += ' {$count : ' |
|
if query[0][6] == '*': |
|
|
|
count_str += '{} }' |
|
|
|
else: |
|
|
|
count_str += query[0][6:-1] + ' }' |
|
|
|
count_str += ',' |
|
i = 0 |
|
while query[i] != 'FROM': |
|
|
|
i += 1 |
|
|
|
i = i +1 |
|
collection = query[i] |
|
i = i + 1 |
|
if i < len(query) and query[i] not in keywords: |
|
|
|
i += 1 |
|
answer = 'db.' + collection + ".aggregate( " |
|
|
|
while i < len(query) and query[i] == 'INNER': |
|
|
|
i = i + 2 |
|
lookup = '{$lookup: { from : "' |
|
lookup += query[i] + '", localField: "' |
|
if query[i+1] not in keywords: |
|
i += 1 |
|
i = i + 2 |
|
lookup += query[i].split('.')[1] + '", foreignField: "' |
|
i = i+2 |
|
lookup += query[i].split('.')[1] + '", as: "' + collection + '"} },' |
|
i = i + 1 |
|
answer += lookup |
|
|
|
|
|
if i < len(query) and query[i] == 'WHERE': |
|
|
|
where = '{$match:' |
|
count = 0 |
|
conditions = '' |
|
|
|
while i < len(query) and (query[i] == 'WHERE' or query[i] == 'AND'): |
|
|
|
count += 1 |
|
i = i+1 |
|
conditions += '{' + (query[i].split('.')[1] if len(query[i].split('.')) > 1 else query[i] ) + " : " |
|
if query[i+1] == '=': |
|
|
|
conditions += query[i+2] |
|
i = i + 3 |
|
|
|
elif query[i+1] == 'BETWEEN': |
|
|
|
conditions += '{$gt: ISODate(' + query[i+2] + '), $lt: ISODate(' + query[i+4] + ')}' |
|
i+= 5 |
|
|
|
else: |
|
|
|
conditions += '{ ' + mapper[query[i+1]] + ' : ' + query[i+2] + ' }' |
|
i = i+3 |
|
|
|
conditions += '},' |
|
|
|
if count > 1: |
|
|
|
where += '{ $and: [' + conditions[:-1] + ']}}' |
|
|
|
else: |
|
|
|
where += conditions[:-1] + '},' |
|
|
|
answer += where |
|
|
|
|
|
if i < len(query) and (query[i] == 'GROUP' or query[i] == 'ORDER'): |
|
|
|
i = i + 2 |
|
group = '{$group: { _id: "' + query[i] + '"' |
|
i += 1 |
|
i -= 3 if query[i -3 ] == 'ORDER' else 0 |
|
if i < len(query) and query[i] == 'ORDER' and len(query[i+2]) > 5 and query[i+2][0:5] == 'COUNT': |
|
|
|
group += ', count: {$count: ' + ('{}' if query[i+2].split('(')[1][:-1] == '*' else ('{' + query[i+2].split('(')[1][:-1].split('.')[1] + '}') ) + '} }}, { $sort: {count : ' + ('1' if query[i+3] == 'ASC' else '-1') + '}},' |
|
|
|
elif i < len(query) and query[i] == 'ORDER': |
|
|
|
group += '} }, { $sort: {' + query[i+2] + ' : ' + ('1' if query[i+3] == 'ASC' else '-1') + '}},' |
|
|
|
else:group += '} },' |
|
|
|
i += 4 |
|
|
|
answer += group |
|
|
|
if i < len(query) and query[i] == 'LIMIT': |
|
|
|
answer += '{ $limit : ' + query[i+1] + ' },' |
|
|
|
answer += '' if count_str == ',' else count_str |
|
answer = answer[:-1] |
|
answer += ')' |
|
|
|
return answer |
|
|
|
|
|
"""# Main method""" |
|
|
|
def query_creator(key, organization, plain_query): |
|
|
|
entities, entities_label = EntityExtraction(plain_query) |
|
modified_query = plain_query |
|
|
|
|
|
|
|
|
|
for i in range(len(entities)): |
|
|
|
if entities_label[i] in ['ORDINAL', 'CARDINAL', 'DATE']: |
|
continue |
|
|
|
col, best_match = find_column(entities[i]) |
|
|
|
modified_query = re.sub(entities[i],best_match,modified_query) |
|
|
|
print("Modified input: ", modified_query) |
|
|
|
MongoDB_query = query_to_SQL_to_MongoDB(modified_query, key, organization) |
|
return MongoDB_query |
|
|
|
|
|
|
|
iface = gr.Interface(fn=query_creator, inputs= [gr.Textbox(label = "API Key"), gr.Textbox(label = "Organization Key"), gr.Textbox(label = "Plain Text Query")], outputs=gr.Textbox(label = "MongoDB Query"), ) |
|
iface.launch() |
|
|
|
|