Spaces:
Running
Running
from dotenv import load_dotenv # Import dotenv to load environment variables | |
import os | |
import chainlit as cl | |
from langchain.chains import RetrievalQA | |
from langchain_community.vectorstores import FAISS | |
from langchain_community.embeddings import OpenAIEmbeddings | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.chat_models import ChatOpenAI | |
from langchain.schema import Document | |
from langchain.embeddings import HuggingFaceEmbeddings | |
import json | |
# Load environment variables from .env file | |
load_dotenv() | |
# Get the OpenAI API key from the environment | |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") | |
if not OPENAI_API_KEY: | |
raise ValueError("OPENAI_API_KEY is not set. Please add it to your .env file.") | |
# Global variables for vector store and QA chain | |
vector_store = None | |
qa_chain = None | |
# Step 1: Load and Process JSON Data | |
def load_json_file(file_path): | |
with open(file_path, "r", encoding="utf-8") as file: | |
data = json.load(file) | |
return data | |
def setup_vector_store_from_json(json_data): | |
# Create Document objects with URLs and content | |
documents = [Document(page_content=item["content"], metadata={"url": item["url"]}) for item in json_data] | |
# Create embeddings and store them in FAISS | |
#embeddings = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY) | |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") | |
vector_store = FAISS.from_documents(documents, embeddings) | |
return vector_store | |
def setup_qa_chain(vector_store): | |
retriever = vector_store.as_retriever(search_kwargs={"k": 3}) | |
llm = ChatOpenAI(model="gpt-3.5-turbo", openai_api_key=OPENAI_API_KEY) | |
qa_chain = RetrievalQA.from_chain_type(llm=llm, retriever=retriever, return_source_documents=True) | |
return qa_chain | |
# Initialize Chainlit: Preload data when the chat starts | |
async def chat_start(): | |
global vector_store, qa_chain | |
# Load and preprocess the JSON file | |
json_data = load_json_file("football_players.json") | |
vector_store = setup_vector_store_from_json(json_data) | |
qa_chain = setup_qa_chain(vector_store) | |
# Send a welcome message | |
await cl.Message(content="Welcome to the RAG app! Ask me any question based on the knowledge base.").send() | |
# Process user queries | |
async def main(message: cl.Message): | |
global qa_chain | |
# Ensure the QA chain is ready | |
if qa_chain is None: | |
await cl.Message(content="The app is still initializing. Please wait a moment and try again.").send() | |
return | |
# Get query from the user and run the QA chain | |
query = message.content | |
response = qa_chain({"query": query}) | |
# Extract the answer and source documents | |
answer = response["result"] | |
sources = response["source_documents"] | |
# Format and send the response | |
await cl.Message(content=f"**Answer:** {answer}").send() | |
if sources: | |
await cl.Message(content="**Sources:**").send() | |
for i, doc in enumerate(sources, 1): | |
url = doc.metadata.get("url", "No URL available") | |
await cl.Message(content=f"**Source {i}:** {doc.page_content}\n**URL:** {url}").send() | |