LibRAG / app1.1.py
bmv2021's picture
changed embedding model to HuggingFace mpnet
a0b734e
raw
history blame
3.25 kB
from dotenv import load_dotenv # Import dotenv to load environment variables
import os
import chainlit as cl
from langchain.chains import RetrievalQA
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.chat_models import ChatOpenAI
from langchain.schema import Document
from langchain.embeddings import HuggingFaceEmbeddings
import json
# Load environment variables from .env file
load_dotenv()
# Get the OpenAI API key from the environment
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
if not OPENAI_API_KEY:
raise ValueError("OPENAI_API_KEY is not set. Please add it to your .env file.")
# Global variables for vector store and QA chain
vector_store = None
qa_chain = None
# Step 1: Load and Process JSON Data
def load_json_file(file_path):
with open(file_path, "r", encoding="utf-8") as file:
data = json.load(file)
return data
def setup_vector_store_from_json(json_data):
# Create Document objects with URLs and content
documents = [Document(page_content=item["content"], metadata={"url": item["url"]}) for item in json_data]
# Create embeddings and store them in FAISS
#embeddings = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY)
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
vector_store = FAISS.from_documents(documents, embeddings)
return vector_store
def setup_qa_chain(vector_store):
retriever = vector_store.as_retriever(search_kwargs={"k": 3})
llm = ChatOpenAI(model="gpt-3.5-turbo", openai_api_key=OPENAI_API_KEY)
qa_chain = RetrievalQA.from_chain_type(llm=llm, retriever=retriever, return_source_documents=True)
return qa_chain
# Initialize Chainlit: Preload data when the chat starts
@cl.on_chat_start
async def chat_start():
global vector_store, qa_chain
# Load and preprocess the JSON file
json_data = load_json_file("football_players.json")
vector_store = setup_vector_store_from_json(json_data)
qa_chain = setup_qa_chain(vector_store)
# Send a welcome message
await cl.Message(content="Welcome to the RAG app! Ask me any question based on the knowledge base.").send()
# Process user queries
@cl.on_message
async def main(message: cl.Message):
global qa_chain
# Ensure the QA chain is ready
if qa_chain is None:
await cl.Message(content="The app is still initializing. Please wait a moment and try again.").send()
return
# Get query from the user and run the QA chain
query = message.content
response = qa_chain({"query": query})
# Extract the answer and source documents
answer = response["result"]
sources = response["source_documents"]
# Format and send the response
await cl.Message(content=f"**Answer:** {answer}").send()
if sources:
await cl.Message(content="**Sources:**").send()
for i, doc in enumerate(sources, 1):
url = doc.metadata.get("url", "No URL available")
await cl.Message(content=f"**Source {i}:** {doc.page_content}\n**URL:** {url}").send()