Spaces:
Running
Running
daniel Foley
commited on
Commit
Β·
08c6b0b
1
Parent(s):
9b667a3
test hf concurrence
Browse files- streamlit-rag-app.py +127 -38
streamlit-rag-app.py
CHANGED
@@ -1,96 +1,185 @@
|
|
1 |
import streamlit as st
|
|
|
2 |
import os
|
|
|
3 |
import json
|
|
|
4 |
from dotenv import load_dotenv
|
5 |
|
6 |
-
|
|
|
|
|
|
|
7 |
from langchain_community.vectorstores import FAISS
|
|
|
8 |
from langchain.text_splitter import CharacterTextSplitter
|
9 |
-
|
|
|
|
|
10 |
from langchain.schema import Document
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
# Load environment variables
|
|
|
14 |
load_dotenv()
|
15 |
|
|
|
|
|
16 |
# Get the OpenAI API key from the environment
|
|
|
17 |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
|
|
18 |
if not OPENAI_API_KEY:
|
|
|
19 |
st.error("OPENAI_API_KEY is not set. Please add it to your .env file.")
|
20 |
|
|
|
|
|
21 |
# Initialize session state variables
|
|
|
22 |
if 'vector_store' not in st.session_state:
|
|
|
23 |
st.session_state.vector_store = None
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
with open(file_path, "r", encoding="utf-8") as file:
|
30 |
-
data = json.load(file)
|
31 |
-
return data
|
32 |
-
|
33 |
-
def setup_vector_store_from_json(json_data):
|
34 |
-
"""Create a vector store from JSON data."""
|
35 |
-
documents = [Document(page_content=item["content"], metadata={"url": item["url"]}) for item in json_data]
|
36 |
|
37 |
-
|
38 |
-
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
39 |
|
40 |
-
vector_store = FAISS.from_documents(documents, embeddings)
|
41 |
-
return vector_store
|
42 |
|
43 |
-
def setup_qa_chain(vector_store):
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
def main():
|
|
|
51 |
# Set page title and header
|
52 |
-
|
|
|
|
|
|
|
|
|
53 |
st.title("Boston Public Library Database π")
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
# Sidebar for initialization
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
# Query input and processing
|
|
|
68 |
st.header("Ask a Question")
|
|
|
69 |
query = st.text_input("Enter your question about BPL's database")
|
70 |
|
|
|
|
|
71 |
if query:
|
|
|
72 |
# Check if vector store and QA chain are initialized
|
73 |
-
|
|
|
|
|
74 |
st.warning("Please load the knowledge base first using the sidebar.")
|
|
|
75 |
else:
|
|
|
76 |
# Run the query
|
|
|
77 |
try:
|
78 |
-
|
|
|
|
|
79 |
|
|
|
80 |
# Display answer
|
|
|
81 |
st.subheader("Answer")
|
|
|
82 |
st.write(response["result"])
|
83 |
|
|
|
|
|
84 |
# Display sources
|
|
|
85 |
st.subheader("Sources")
|
|
|
86 |
sources = response["source_documents"]
|
|
|
87 |
for i, doc in enumerate(sources, 1):
|
|
|
88 |
with st.expander(f"Source {i}"):
|
|
|
89 |
st.write(f"**Content:** {doc.page_content}")
|
|
|
90 |
st.write(f"**URL:** {doc.metadata.get('url', 'No URL available')}")
|
91 |
|
|
|
|
|
92 |
except Exception as e:
|
|
|
93 |
st.error(f"An error occurred: {e}")
|
94 |
|
|
|
|
|
95 |
if __name__ == "__main__":
|
|
|
96 |
main()
|
|
|
1 |
import streamlit as st
|
2 |
+
|
3 |
import os
|
4 |
+
|
5 |
import json
|
6 |
+
|
7 |
from dotenv import load_dotenv
|
8 |
|
9 |
+
|
10 |
+
|
11 |
+
# from langchain.chains import RetrievalQA
|
12 |
+
|
13 |
from langchain_community.vectorstores import FAISS
|
14 |
+
|
15 |
from langchain.text_splitter import CharacterTextSplitter
|
16 |
+
|
17 |
+
from langchain_openai import ChatOpenAI, OpenAIEmbeddings, OpenAI
|
18 |
+
|
19 |
from langchain.schema import Document
|
20 |
+
|
21 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
22 |
+
|
23 |
+
from langchain.chains.combine_documents import create_stuff_documents_chain
|
24 |
+
|
25 |
+
from langchain.chains.retrieval import create_retrieval_chain
|
26 |
+
|
27 |
+
from langchain_core.prompts import PromptTemplate
|
28 |
+
|
29 |
+
|
30 |
|
31 |
# Load environment variables
|
32 |
+
|
33 |
load_dotenv()
|
34 |
|
35 |
+
|
36 |
+
|
37 |
# Get the OpenAI API key from the environment
|
38 |
+
|
39 |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
40 |
+
|
41 |
if not OPENAI_API_KEY:
|
42 |
+
|
43 |
st.error("OPENAI_API_KEY is not set. Please add it to your .env file.")
|
44 |
|
45 |
+
|
46 |
+
|
47 |
# Initialize session state variables
|
48 |
+
|
49 |
if 'vector_store' not in st.session_state:
|
50 |
+
|
51 |
st.session_state.vector_store = None
|
52 |
+
|
53 |
+
# if 'qa_chain' not in st.session_state:
|
54 |
+
|
55 |
+
# st.session_state.qa_chain = None
|
56 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
|
|
|
59 |
|
|
|
|
|
60 |
|
61 |
+
# def setup_qa_chain(vector_store):
|
62 |
+
|
63 |
+
# """Set up the QA chain with a retriever."""
|
64 |
+
|
65 |
+
# retriever = vector_store.as_retriever(search_kwargs={"k": 3})
|
66 |
+
|
67 |
+
# llm = ChatOpenAI(model="gpt-3.5-turbo", openai_api_key=OPENAI_API_KEY)
|
68 |
+
|
69 |
+
# qa_chain = RetrievalQA.from_chain_type(llm=llm, retriever=retriever, return_source_documents=True)
|
70 |
+
|
71 |
+
# return qa_chain
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
prompt_template = PromptTemplate.from_template("Answer the following query based on a number of context documents Query:{query},Context:{context},Answer:")
|
76 |
+
|
77 |
+
|
78 |
|
79 |
def main():
|
80 |
+
|
81 |
# Set page title and header
|
82 |
+
|
83 |
+
llm = ChatOpenAI(model="gpt-3.5-turbo", openai_api_key=OPENAI_API_KEY)
|
84 |
+
|
85 |
+
st.set_page_config(page_title="LibRAG", page_icon="π")
|
86 |
+
|
87 |
st.title("Boston Public Library Database π")
|
88 |
|
89 |
+
|
90 |
+
|
91 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
# Sidebar for initialization
|
96 |
+
|
97 |
+
# st.sidebar.header("Initialize Knowledge Base")
|
98 |
+
|
99 |
+
# if st.sidebar.button("Load Data"):
|
100 |
+
|
101 |
+
# try:
|
102 |
+
|
103 |
+
# st.session_state.vector_store = FAISS.load_local(
|
104 |
+
|
105 |
+
# "vector-store", embeddings, allow_dangerous_deserialization=True
|
106 |
+
|
107 |
+
# )
|
108 |
+
|
109 |
+
# st.session_state.qa_chain = setup_qa_chain(st.session_state.vector_store)
|
110 |
+
|
111 |
+
# st.sidebar.success("Knowledge base loaded successfully!")
|
112 |
+
|
113 |
+
# except Exception as e:
|
114 |
+
|
115 |
+
# st.sidebar.error(f"Error loading data: {e}")
|
116 |
+
|
117 |
+
|
118 |
+
|
119 |
+
st.session_state.vector_store = FAISS.load_local("vector-store", embeddings, allow_dangerous_deserialization=True)
|
120 |
+
|
121 |
+
st.session_state.combine_docs_chain = create_stuff_documents_chain(llm, prompt_template)
|
122 |
+
|
123 |
+
st.session_stateretrieval_chain = create_retrieval_chain(st.session_state.vector_store.as_retriever(search_kwargs={"k": 3}), combine_docs_chain)
|
124 |
+
|
125 |
+
# st.session_state.qa_chain = setup_qa_chain(st.session_state.vector_store)
|
126 |
|
127 |
# Query input and processing
|
128 |
+
|
129 |
st.header("Ask a Question")
|
130 |
+
|
131 |
query = st.text_input("Enter your question about BPL's database")
|
132 |
|
133 |
+
response = llm.invoke()
|
134 |
+
|
135 |
if query:
|
136 |
+
|
137 |
# Check if vector store and QA chain are initialized
|
138 |
+
|
139 |
+
if st.session_state.response is None:
|
140 |
+
|
141 |
st.warning("Please load the knowledge base first using the sidebar.")
|
142 |
+
|
143 |
else:
|
144 |
+
|
145 |
# Run the query
|
146 |
+
|
147 |
try:
|
148 |
+
|
149 |
+
st.session_state.response = retrieval_chain.invoke({"input": f"{query}"})
|
150 |
+
|
151 |
|
152 |
+
|
153 |
# Display answer
|
154 |
+
|
155 |
st.subheader("Answer")
|
156 |
+
|
157 |
st.write(response["result"])
|
158 |
|
159 |
+
|
160 |
+
|
161 |
# Display sources
|
162 |
+
|
163 |
st.subheader("Sources")
|
164 |
+
|
165 |
sources = response["source_documents"]
|
166 |
+
|
167 |
for i, doc in enumerate(sources, 1):
|
168 |
+
|
169 |
with st.expander(f"Source {i}"):
|
170 |
+
|
171 |
st.write(f"**Content:** {doc.page_content}")
|
172 |
+
|
173 |
st.write(f"**URL:** {doc.metadata.get('url', 'No URL available')}")
|
174 |
|
175 |
+
|
176 |
+
|
177 |
except Exception as e:
|
178 |
+
|
179 |
st.error(f"An error occurred: {e}")
|
180 |
|
181 |
+
|
182 |
+
|
183 |
if __name__ == "__main__":
|
184 |
+
|
185 |
main()
|