Spaces:
Running
Running
Daniel Foley
commited on
Commit
·
1d172f1
1
Parent(s):
7a5560a
Solution for too large input
Browse files
RAG.py
CHANGED
@@ -15,6 +15,47 @@ from typing import Dict, Any, Optional, List, Tuple
|
|
15 |
import json
|
16 |
import logging
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
def retrieve(query: str,vectorstore:PineconeVectorStore, k: int = 1000) -> Tuple[List[Document], List[float]]:
|
19 |
start = time.time()
|
20 |
# pinecone_api_key = os.getenv("PINECONE_API_KEY")
|
@@ -182,7 +223,7 @@ def RAG(llm: Any, query: str,vectorstore:PineconeVectorStore, top: int = 10, k:
|
|
182 |
<CONTEXT>Cars use gasoline for fuel. Some cars use electricity for fuel.Tesla stock has increased by 10 percent over the last quarter.</CONTEXT>
|
183 |
<REASONING>Based on the context pineapples have not been explored as a fuel for cars. The context discusses gasoline, electricity, and tesla stock, therefore it is not relevant to the query about pineapples for fuel</REASONING>
|
184 |
<VALID>NO</VALID>
|
185 |
-
<RESPONSE>Pineapples are not a good fuel for cars, however with further
|
186 |
</EXAMPLE>
|
187 |
Now it's your turn
|
188 |
<QUERY>
|
@@ -192,6 +233,9 @@ def RAG(llm: Any, query: str,vectorstore:PineconeVectorStore, top: int = 10, k:
|
|
192 |
|
193 |
# Generate response
|
194 |
ans_prompt = answer_template.invoke({"context": context, "query": query})
|
|
|
|
|
|
|
195 |
response = llm.invoke(ans_prompt)
|
196 |
|
197 |
# Parse and return response
|
|
|
15 |
import json
|
16 |
import logging
|
17 |
|
18 |
+
|
19 |
+
import logging
|
20 |
+
from datetime import datetime
|
21 |
+
from io import StringIO
|
22 |
+
|
23 |
+
class RunLogger:
|
24 |
+
def __init__(self, script_name='streamlit_script'):
|
25 |
+
# Create string buffer to store logs
|
26 |
+
self.log_buffer = StringIO()
|
27 |
+
|
28 |
+
# Create logger
|
29 |
+
self.logger = logging.getLogger(script_name)
|
30 |
+
self.logger.setLevel(logging.INFO)
|
31 |
+
|
32 |
+
# Create handler that writes to our string buffer
|
33 |
+
handler = logging.StreamHandler(self.log_buffer)
|
34 |
+
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
|
35 |
+
handler.setFormatter(formatter)
|
36 |
+
self.logger.addHandler(handler)
|
37 |
+
|
38 |
+
self.logger.info("=== Starting new run ===")
|
39 |
+
|
40 |
+
def info(self, message):
|
41 |
+
self.logger.info(message)
|
42 |
+
|
43 |
+
def error(self, message):
|
44 |
+
self.logger.error(message)
|
45 |
+
|
46 |
+
def warning(self, message):
|
47 |
+
self.logger.warning(message)
|
48 |
+
|
49 |
+
def output_logs(self):
|
50 |
+
"""Print all collected logs"""
|
51 |
+
print("\n=== Run Complete - All Logs ===")
|
52 |
+
print(self.log_buffer.getvalue())
|
53 |
+
print("=== End Logs ===\n")
|
54 |
+
|
55 |
+
def __del__(self):
|
56 |
+
"""Ensure logs are output if logger is garbage collected"""
|
57 |
+
self.output_logs()
|
58 |
+
|
59 |
def retrieve(query: str,vectorstore:PineconeVectorStore, k: int = 1000) -> Tuple[List[Document], List[float]]:
|
60 |
start = time.time()
|
61 |
# pinecone_api_key = os.getenv("PINECONE_API_KEY")
|
|
|
223 |
<CONTEXT>Cars use gasoline for fuel. Some cars use electricity for fuel.Tesla stock has increased by 10 percent over the last quarter.</CONTEXT>
|
224 |
<REASONING>Based on the context pineapples have not been explored as a fuel for cars. The context discusses gasoline, electricity, and tesla stock, therefore it is not relevant to the query about pineapples for fuel</REASONING>
|
225 |
<VALID>NO</VALID>
|
226 |
+
<RESPONSE>Pineapples are not a good fuel for cars, however with further research they might be</RESPONSE>
|
227 |
</EXAMPLE>
|
228 |
Now it's your turn
|
229 |
<QUERY>
|
|
|
233 |
|
234 |
# Generate response
|
235 |
ans_prompt = answer_template.invoke({"context": context, "query": query})
|
236 |
+
# Max input tokens is 10,000 for 4o-mini. This is a quick and dirty solution
|
237 |
+
if len(ans_prompt) > 30000:
|
238 |
+
ans_prompt = ans_prompt[:30000]
|
239 |
response = llm.invoke(ans_prompt)
|
240 |
|
241 |
# Parse and return response
|