Spaces:
Running
Running
changing from chainlit to streamlit
Browse files- streamlit-rag-app.py +96 -0
streamlit-rag-app.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
import json
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
|
6 |
+
from langchain.chains import RetrievalQA
|
7 |
+
from langchain_community.vectorstores import FAISS
|
8 |
+
from langchain.text_splitter import CharacterTextSplitter
|
9 |
+
from langchain.chat_models import ChatOpenAI
|
10 |
+
from langchain.schema import Document
|
11 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
12 |
+
|
13 |
+
# Load environment variables
|
14 |
+
load_dotenv()
|
15 |
+
|
16 |
+
# Get the OpenAI API key from the environment
|
17 |
+
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
18 |
+
if not OPENAI_API_KEY:
|
19 |
+
st.error("OPENAI_API_KEY is not set. Please add it to your .env file.")
|
20 |
+
|
21 |
+
# Initialize session state variables
|
22 |
+
if 'vector_store' not in st.session_state:
|
23 |
+
st.session_state.vector_store = None
|
24 |
+
if 'qa_chain' not in st.session_state:
|
25 |
+
st.session_state.qa_chain = None
|
26 |
+
|
27 |
+
def load_json_file(file_path):
|
28 |
+
"""Load JSON data from a file."""
|
29 |
+
with open(file_path, "r", encoding="utf-8") as file:
|
30 |
+
data = json.load(file)
|
31 |
+
return data
|
32 |
+
|
33 |
+
def setup_vector_store_from_json(json_data):
|
34 |
+
"""Create a vector store from JSON data."""
|
35 |
+
documents = [Document(page_content=item["content"], metadata={"url": item["url"]}) for item in json_data]
|
36 |
+
|
37 |
+
# Use HuggingFace embeddings
|
38 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
39 |
+
|
40 |
+
vector_store = FAISS.from_documents(documents, embeddings)
|
41 |
+
return vector_store
|
42 |
+
|
43 |
+
def setup_qa_chain(vector_store):
|
44 |
+
"""Set up the QA chain with a retriever."""
|
45 |
+
retriever = vector_store.as_retriever(search_kwargs={"k": 3})
|
46 |
+
llm = ChatOpenAI(model="gpt-3.5-turbo", openai_api_key=OPENAI_API_KEY)
|
47 |
+
qa_chain = RetrievalQA.from_chain_type(llm=llm, retriever=retriever, return_source_documents=True)
|
48 |
+
return qa_chain
|
49 |
+
|
50 |
+
def main():
|
51 |
+
# Set page title and header
|
52 |
+
st.set_page_config(page_title="Football Players RAG App", page_icon="⚽")
|
53 |
+
st.title("Football Players Knowledge Base 🏆")
|
54 |
+
|
55 |
+
# Sidebar for initialization
|
56 |
+
st.sidebar.header("Initialize Knowledge Base")
|
57 |
+
if st.sidebar.button("Load Data"):
|
58 |
+
try:
|
59 |
+
# Load and preprocess the JSON file
|
60 |
+
json_data = load_json_file("football_players.json")
|
61 |
+
st.session_state.vector_store = setup_vector_store_from_json(json_data)
|
62 |
+
st.session_state.qa_chain = setup_qa_chain(st.session_state.vector_store)
|
63 |
+
st.sidebar.success("Knowledge base loaded successfully!")
|
64 |
+
except Exception as e:
|
65 |
+
st.sidebar.error(f"Error loading data: {e}")
|
66 |
+
|
67 |
+
# Query input and processing
|
68 |
+
st.header("Ask a Question")
|
69 |
+
query = st.text_input("Enter your question about football players:")
|
70 |
+
|
71 |
+
if query:
|
72 |
+
# Check if vector store and QA chain are initialized
|
73 |
+
if st.session_state.qa_chain is None:
|
74 |
+
st.warning("Please load the knowledge base first using the sidebar.")
|
75 |
+
else:
|
76 |
+
# Run the query
|
77 |
+
try:
|
78 |
+
response = st.session_state.qa_chain({"query": query})
|
79 |
+
|
80 |
+
# Display answer
|
81 |
+
st.subheader("Answer")
|
82 |
+
st.write(response["result"])
|
83 |
+
|
84 |
+
# Display sources
|
85 |
+
st.subheader("Sources")
|
86 |
+
sources = response["source_documents"]
|
87 |
+
for i, doc in enumerate(sources, 1):
|
88 |
+
with st.expander(f"Source {i}"):
|
89 |
+
st.write(f"**Content:** {doc.page_content}")
|
90 |
+
st.write(f"**URL:** {doc.metadata.get('url', 'No URL available')}")
|
91 |
+
|
92 |
+
except Exception as e:
|
93 |
+
st.error(f"An error occurred: {e}")
|
94 |
+
|
95 |
+
if __name__ == "__main__":
|
96 |
+
main()
|