Spaces:
Running
Running
added image feature
Browse files- new_streamlit.py +188 -0
new_streamlit.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
from typing import List, Tuple, Optional
|
4 |
+
from pinecone import Pinecone
|
5 |
+
from langchain_pinecone import PineconeVectorStore
|
6 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
7 |
+
from langchain_openai import ChatOpenAI
|
8 |
+
from langchain_core.prompts import PromptTemplate
|
9 |
+
from dotenv import load_dotenv
|
10 |
+
from RAG import RAG
|
11 |
+
from bpl_scraper import DigitalCommonwealthScraper
|
12 |
+
import logging
|
13 |
+
import json
|
14 |
+
import shutil
|
15 |
+
from PIL import Image
|
16 |
+
import io
|
17 |
+
|
18 |
+
# Configure logging
|
19 |
+
logging.basicConfig(level=logging.INFO)
|
20 |
+
logger = logging.getLogger(__name__)
|
21 |
+
|
22 |
+
# Page configuration
|
23 |
+
st.set_page_config(
|
24 |
+
page_title="Boston Public Library Chatbot",
|
25 |
+
page_icon="🤖",
|
26 |
+
layout="wide"
|
27 |
+
)
|
28 |
+
|
29 |
+
def initialize_models() -> Tuple[Optional[ChatOpenAI], HuggingFaceEmbeddings]:
|
30 |
+
"""Initialize the language model and embeddings."""
|
31 |
+
try:
|
32 |
+
load_dotenv()
|
33 |
+
|
34 |
+
# Initialize OpenAI model
|
35 |
+
llm = ChatOpenAI(
|
36 |
+
model="gpt-4", # Changed from gpt-4o-mini which appears to be a typo
|
37 |
+
temperature=0,
|
38 |
+
timeout=60, # Added reasonable timeout
|
39 |
+
max_retries=2
|
40 |
+
)
|
41 |
+
|
42 |
+
# Initialize embeddings
|
43 |
+
embeddings = HuggingFaceEmbeddings(
|
44 |
+
model_name="sentence-transformers/all-MiniLM-L6-v2"
|
45 |
+
)
|
46 |
+
|
47 |
+
return llm, embeddings
|
48 |
+
|
49 |
+
except Exception as e:
|
50 |
+
logger.error(f"Error initializing models: {str(e)}")
|
51 |
+
st.error(f"Failed to initialize models: {str(e)}")
|
52 |
+
return None, None
|
53 |
+
|
54 |
+
def process_message(
|
55 |
+
query: str,
|
56 |
+
llm: ChatOpenAI,
|
57 |
+
index_name: str,
|
58 |
+
embeddings: HuggingFaceEmbeddings
|
59 |
+
) -> Tuple[str, List]:
|
60 |
+
"""Process the user message using the RAG system."""
|
61 |
+
try:
|
62 |
+
response, sources = RAG(
|
63 |
+
query=query,
|
64 |
+
llm=llm,
|
65 |
+
index_name=index_name,
|
66 |
+
embeddings=embeddings
|
67 |
+
)
|
68 |
+
return response, sources
|
69 |
+
except Exception as e:
|
70 |
+
logger.error(f"Error in process_message: {str(e)}")
|
71 |
+
return f"Error processing message: {str(e)}", []
|
72 |
+
|
73 |
+
def display_sources(sources: List) -> None:
|
74 |
+
"""Display sources in expandable sections with proper formatting."""
|
75 |
+
if not sources:
|
76 |
+
st.info("No sources available for this response.")
|
77 |
+
return
|
78 |
+
|
79 |
+
st.subheader("Sources")
|
80 |
+
for i, doc in enumerate(sources, 1):
|
81 |
+
try:
|
82 |
+
with st.expander(f"Source {i}"):
|
83 |
+
if hasattr(doc, 'page_content'):
|
84 |
+
st.markdown(f"**Content:** {doc.page_content[0:100] + ' ...'}")
|
85 |
+
if hasattr(doc, 'metadata'):
|
86 |
+
for key, value in doc.metadata.items():
|
87 |
+
st.markdown(f"**{key.title()}:** {value}")
|
88 |
+
|
89 |
+
# Web Scraper to display images of sources
|
90 |
+
# Especially helpful if the sources are images themselves
|
91 |
+
# or are OCR'd text files
|
92 |
+
scraper = DigitalCommonwealthScraper()
|
93 |
+
images = scraper.extract_images(doc.metadata["URL"])
|
94 |
+
images = images[:1]
|
95 |
+
|
96 |
+
# If there are no images then don't display them
|
97 |
+
if not images:
|
98 |
+
st.warning("No images found on the page.")
|
99 |
+
return
|
100 |
+
|
101 |
+
# Download the images
|
102 |
+
# Delete the directory if it already exists
|
103 |
+
# to clear the existing cache of images for each listed source
|
104 |
+
output_dir = 'downloaded_images'
|
105 |
+
if os.path.exists(output_dir):
|
106 |
+
shutil.rmtree(output_dir)
|
107 |
+
|
108 |
+
# Download the main image to a local directory
|
109 |
+
downloaded_files = scraper.download_images(images)
|
110 |
+
|
111 |
+
# Display the image using st.image
|
112 |
+
# Display the title of the image using img.get
|
113 |
+
st.image(downloaded_files, width=400, caption=[
|
114 |
+
img.get('alt', f'Image {i+1}') for i, img in enumerate(images)
|
115 |
+
])
|
116 |
+
|
117 |
+
else:
|
118 |
+
st.markdown(f"**Content:** {str(doc)}")
|
119 |
+
|
120 |
+
except Exception as e:
|
121 |
+
logger.error(f"Error displaying source {i}: {str(e)}")
|
122 |
+
st.error(f"Error displaying source {i}")
|
123 |
+
|
124 |
+
|
125 |
+
def main():
|
126 |
+
st.title("Boston Public Library RAG Chatbot")
|
127 |
+
|
128 |
+
# Initialize session state
|
129 |
+
if "messages" not in st.session_state:
|
130 |
+
st.session_state.messages = []
|
131 |
+
|
132 |
+
# Initialize models
|
133 |
+
llm, embeddings = initialize_models()
|
134 |
+
if not llm or not embeddings:
|
135 |
+
st.error("Failed to initialize the application. Please check the logs.")
|
136 |
+
return
|
137 |
+
|
138 |
+
# Constants
|
139 |
+
INDEX_NAME = 'bpl-rag'
|
140 |
+
|
141 |
+
# Display chat history
|
142 |
+
for message in st.session_state.messages:
|
143 |
+
with st.chat_message(message["role"]):
|
144 |
+
st.markdown(message["content"])
|
145 |
+
|
146 |
+
# Chat input
|
147 |
+
user_input = st.chat_input("Type your message here...")
|
148 |
+
|
149 |
+
|
150 |
+
|
151 |
+
if user_input:
|
152 |
+
# Display user message
|
153 |
+
with st.chat_message("user"):
|
154 |
+
st.markdown(user_input)
|
155 |
+
st.session_state.messages.append({"role": "user", "content": user_input})
|
156 |
+
|
157 |
+
# Process and display assistant response
|
158 |
+
with st.chat_message("assistant"):
|
159 |
+
with st.spinner("Thinking..."):
|
160 |
+
response, sources = process_message(
|
161 |
+
query=user_input,
|
162 |
+
llm=llm,
|
163 |
+
index_name=INDEX_NAME,
|
164 |
+
embeddings=embeddings
|
165 |
+
)
|
166 |
+
|
167 |
+
if isinstance(response, str):
|
168 |
+
st.markdown(response)
|
169 |
+
st.session_state.messages.append({
|
170 |
+
"role": "assistant",
|
171 |
+
"content": response
|
172 |
+
})
|
173 |
+
|
174 |
+
# Display sources
|
175 |
+
display_sources(sources)
|
176 |
+
|
177 |
+
else:
|
178 |
+
st.error("Received an invalid response format")
|
179 |
+
|
180 |
+
# Footer
|
181 |
+
st.markdown("---")
|
182 |
+
st.markdown(
|
183 |
+
"Built with ❤️ using Streamlit + LangChain + OpenAI",
|
184 |
+
help="An AI-powered chatbot with RAG capabilities"
|
185 |
+
)
|
186 |
+
|
187 |
+
if __name__ == "__main__":
|
188 |
+
main()
|