import getpass
import os
import time
from pinecone import Pinecone, ServerlessSpec
from langchain_pinecone import PineconeVectorStore
from langchain_huggingface import HuggingFaceEmbeddings
from dotenv import load_dotenv
from langchain_core.prompts import PromptTemplate
from langchain_openai import ChatOpenAI
import re
from langchain_core.documents import Document
from langchain_community.retrievers import BM25Retriever
import requests
from typing import Dict, Any, Optional, List, Tuple
import json
import logging
import logging
from datetime import datetime
from io import StringIO
class RunLogger:
def __init__(self, script_name='streamlit_script'):
# Create string buffer to store logs
self.log_buffer = StringIO()
# Create logger
self.logger = logging.getLogger(script_name)
self.logger.setLevel(logging.INFO)
# Create handler that writes to our string buffer
handler = logging.StreamHandler(self.log_buffer)
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
self.logger.addHandler(handler)
self.logger.info("=== Starting new run ===")
def info(self, message):
self.logger.info(message)
def error(self, message):
self.logger.error(message)
def warning(self, message):
self.logger.warning(message)
def output_logs(self):
"""Print all collected logs"""
print("\n=== Run Complete - All Logs ===")
print(self.log_buffer.getvalue())
print("=== End Logs ===\n")
def __del__(self):
"""Ensure logs are output if logger is garbage collected"""
self.output_logs()
def retrieve(query: str,vectorstore:PineconeVectorStore, k: int = 1000) -> Tuple[List[Document], List[float]]:
start = time.time()
# pinecone_api_key = os.getenv("PINECONE_API_KEY")
# pc = Pinecone(api_key=pinecone_api_key)
# index = pc.Index(index_name)
# vector_store = PineconeVectorStore(index=index, embedding=embeddings)
results = vectorstore.similarity_search_with_score(
query,
k=k,
)
documents = []
scores = []
for res, score in results:
documents.append(res)
scores.append(score)
logging.info(f"Finished Retrieval: {time.time() - start}")
return documents, scores
def safe_get_json(url: str) -> Optional[Dict]:
"""Safely fetch and parse JSON from a URL."""
print("Fetching JSON")
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
return response.json()
except Exception as e:
logging.error(f"Error fetching from {url}: {str(e)}")
return None
def extract_text_from_json(json_data: Dict) -> str:
"""Extract text content from JSON response."""
if not json_data:
return ""
text_parts = []
# Handle direct text fields
text_fields = ["title_info_primary_tsi","abstract_tsi","subject_geographic_sim","genre_specific_ssim"]
for field in text_fields:
if field in json_data['data']['attributes'] and json_data['data']['attributes'][field]:
# print(json_data[field])
text_parts.append(str(json_data['data']['attributes'][field]))
return " ".join(text_parts) if text_parts else "No content available"
def rerank(documents: List[Document], query: str) -> List[Document]:
"""Ingest more metadata. Rerank documents using BM25"""
start = time.time()
if not documents:
return []
full_docs = []
meta_start = time.time()
for doc in documents:
if not doc.metadata.get('source'):
continue
url = f"https://www.digitalcommonwealth.org/search/{doc.metadata['source']}"
json_data = safe_get_json(f"{url}.json")
if json_data:
text_content = extract_text_from_json(json_data)
if text_content: # Only add documents with actual content
full_docs.append(Document(page_content=text_content, metadata={"source":doc.metadata['source'],"field":doc.metadata['field'],"URL":url}))
logging.info(f"Took {time.time()-meta_start} seconds to retrieve all metadata")
# If no valid documents were processed, return empty list
if not full_docs:
return []
# Create BM25 retriever with the processed documents
reranker = BM25Retriever.from_documents(full_docs, k=min(10, len(full_docs)))
reranked_docs = reranker.invoke(query)
logging.info(f"Finished reranking: {time.time()-start}")
return reranked_docs
def parse_xml_and_query(query:str,xml_string:str) -> str:
"""parse xml and return rephrased query"""
if not xml_string:
return "No response generated."
pattern = r"<(\w+)>(.*?)\1>"
matches = re.findall(pattern, xml_string, re.DOTALL)
parsed_response = dict(matches)
if parsed_response.get('VALID') == 'NO':
return query
return parsed_response.get('STATEMENT', query)
def parse_xml_and_check(xml_string: str) -> str:
"""Parse XML-style tags and handle validation."""
if not xml_string:
return "No response generated."
pattern = r"<(\w+)>(.*?)\1>"
matches = re.findall(pattern, xml_string, re.DOTALL)
parsed_response = dict(matches)
if parsed_response.get('VALID') == 'NO':
return "Sorry, I was unable to find any documents relevant to your query."
return parsed_response.get('RESPONSE', "No response found in the output")
def RAG(llm: Any, query: str,vectorstore:PineconeVectorStore, top: int = 10, k: int = 100) -> Tuple[str, List[Document]]:
"""Main RAG function with improved error handling and validation."""
start = time.time()
try:
# Retrieve initial documents using rephrased query -- not working as intended currently, maybe would be better for data with more words.
# query_template = PromptTemplate.from_template(
# """
# Your job is to think about a query and then generate a statement that only includes information from the query that would answer the query.
# You will be provided with a query in tags.
# Then you will think about what kind of information the query is looking for between tags.
# Then, based on the reasoning, you will generate a sample response to the query that only includes information from the query between tags.
# Afterwards, you will determine and reason about whether or not the statement you generated only includes information from the original query and would answer the query between tags.
# Finally, you will return a YES, or NO response between tags based on whether or not you determined the statment to be valid.
# Let me provide you with an exmaple:
# I would really like to learn more about Bermudan geography
# This query is interested in geograph as it relates to Bermuda. Some things they might be interested in are Bermudan climate, towns, cities, and geography
# Bermuda's Climate is [blank]. Some of Bermuda's cities and towns are [blank]. Other points of interested about Bermuda's geography are [blank].
# The query originally only mentions bermuda and geography. The answers do not provide any false information, instead replacing meaningful responses with a placeholder [blank]. If it had hallucinated, it would not be valid. Because the statements do not hallucinate anything, this is a valid statement.
# YES
# Now it's your turn! Remember not to hallucinate:
# {query}
# """
# )
# query_prompt = query_template.invoke({"query":query})
# query_response = llm.invoke(query_prompt)
# new_query = parse_xml_and_query(query=query,xml_string=query_response.content)
logging.info(f"\n---\nQUERY: {query}")
retrieved, _ = retrieve(query=query, vectorstore=vectorstore, k=k)
if not retrieved:
return "No documents found for your query.", []
# Rerank documents
reranked = rerank(documents=retrieved, query=query)
if not reranked:
return "Unable to process the retrieved documents.", []
# Prepare context from reranked documents
context = "\n\n".join(doc.page_content for doc in reranked[:top] if doc.page_content)
if not context.strip():
return "No relevant content found in the documents.", []
# change for the sake of another commit
# Prepare prompt
answer_template = PromptTemplate.from_template(
"""Pretend you are a professional librarian. Please Summarize The Following Context as though you had retrieved it for a patron:
Context:{context}
Make sure to answer in the following format
First, reason about the answer between headers,
based on the context determine if there is sufficient material for answering the exact question,
return either YES or NO
then return a response between headers:
Here is an example
Are pineapples a good fuel for cars?
Cars use gasoline for fuel. Some cars use electricity for fuel.Tesla stock has increased by 10 percent over the last quarter.
Based on the context pineapples have not been explored as a fuel for cars. The context discusses gasoline, electricity, and tesla stock, therefore it is not relevant to the query about pineapples for fuel
NO
Pineapples are not a good fuel for cars, however with further research they might be
Now it's your turn
{query}
"""
)
# Generate response
ans_prompt = answer_template.invoke({"context": context, "query": query})
# Max input tokens is 10,000 for 4o-mini. This is a quick and dirty solution
if len(ans_prompt) > 30000:
ans_prompt = ans_prompt[:30000]
response = llm.invoke(ans_prompt)
# Parse and return response
parsed = parse_xml_and_check(response.content)
logging.info(f"RESPONSE: {parsed}\nRETRIEVED: {reranked}")
logging.info(f"RAG Finished: {time.time()-start}\n---\n")
return parsed, reranked
except Exception as e:
logging.error(f"Error in RAG function: {str(e)}")
return f"An error occurred while processing your query: {str(e)}", []