import getpass
import os
import time
from pinecone import Pinecone, ServerlessSpec
from langchain_pinecone import PineconeVectorStore
from langchain_huggingface import HuggingFaceEmbeddings
from dotenv import load_dotenv
from langchain_core.prompts import PromptTemplate
from langchain_openai import ChatOpenAI
import re
from langchain_core.documents import Document
from langchain_community.retrievers import BM25Retriever
import requests
from typing import Dict, Any, Optional, List, Tuple
import json
import logging
def retrieve(index_name: str, query: str, embeddings, k: int = 1000) -> Tuple[List[Document], List[float]]:
load_dotenv()
pinecone_api_key = os.getenv("PINECONE_API_KEY")
pc = Pinecone(api_key=pinecone_api_key)
index = pc.Index(index_name)
vector_store = PineconeVectorStore(index=index, embedding=embeddings)
results = vector_store.similarity_search_with_score(
query,
k=k,
)
documents = []
scores = []
for res, score in results:
documents.append(res)
scores.append(score)
return documents, scores
def safe_get_json(url: str) -> Optional[Dict]:
"""Safely fetch and parse JSON from a URL."""
print("Fetching JSON")
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
return response.json()
except Exception as e:
logging.error(f"Error fetching from {url}: {str(e)}")
return None
def extract_text_from_json(json_data: Dict) -> str:
"""Extract text content from JSON response."""
if not json_data:
return ""
text_parts = []
# Handle direct text fields
text_fields = ["title_info_primary_tsi","abstract_tsi","subject_geographic_sim","genre_specific_ssim"]
for field in text_fields:
if field in json_data['data']['attributes'] and json_data['data']['attributes'][field]:
# print(json_data[field])
text_parts.append(str(json_data['data']['attributes'][field]))
return " ".join(text_parts) if text_parts else "No content available"
def rerank(documents: List[Document], query: str) -> List[Document]:
"""Rerank documents using BM25, with proper error handling."""
if not documents:
return []
full_docs = []
for doc in documents:
if not doc.metadata.get('source'):
continue
url = f"https://www.digitalcommonwealth.org/search/{doc.metadata['source']}"
json_data = safe_get_json(f"{url}.json")
if json_data:
text_content = extract_text_from_json(json_data)
if text_content: # Only add documents with actual content
full_docs.append(Document(page_content=text_content, metadata={"source":doc.metadata['source'],"field":doc.metadata['field'],"URL":url}))
# If no valid documents were processed, return empty list
if not full_docs:
return []
# Create BM25 retriever with the processed documents
reranker = BM25Retriever.from_documents(full_docs, k=min(10, len(full_docs)))
reranked_docs = reranker.invoke(query)
return reranked_docs
def parse_xml_and_check(xml_string: str) -> str:
"""Parse XML-style tags and handle validation."""
if not xml_string:
return "No response generated."
pattern = r"<(\w+)>(.*?)\1>"
matches = re.findall(pattern, xml_string, re.DOTALL)
parsed_response = dict(matches)
if parsed_response.get('VALID') == 'NO':
return "Sorry, I was unable to find any documents relevant to your query."
return parsed_response.get('RESPONSE', "No response found in the output")
def RAG(llm: Any, query: str, index_name: str, embeddings: Any, top: int = 10, k: int = 100) -> Tuple[str, List[Document]]:
"""Main RAG function with improved error handling and validation."""
try:
# Retrieve initial documents
retrieved, _ = retrieve(index_name=index_name, query=query, embeddings=embeddings, k=k)
if not retrieved:
return "No documents found for your query.", []
# Rerank documents
reranked = rerank(documents=retrieved, query=query)
if not reranked:
return "Unable to process the retrieved documents.", []
# Prepare context from reranked documents
context = "\n\n".join(doc.page_content for doc in reranked[:top] if doc.page_content)
if not context.strip():
return "No relevant content found in the documents.", []
# Prepare prompt
prompt_template = PromptTemplate.from_template(
"""Pretend you are a professional librarian. Please Summarize The Following Context as though you had retrieved it for a patron:
Context:{context}
Make sure to answer in the following format
First, reason about the answer between headers,
based on the context determine if there is sufficient material for answering the exact question,
return either YES or NO
then return a response between headers:
Here is an example
Are pineapples a good fuel for cars?
Cars use gasoline for fuel. Some cars use electricity for fuel.Tesla stock has increased by 10 percent over the last quarter.
Based on the context pineapples have not been explored as a fuel for cars. The context discusses gasoline, electricity, and tesla stock, therefore it is not relevant to the query about pineapples for fuel
NO
Pineapples are not a good fuel for cars, however with further researach they migth be
Now it's your turn
{query}
"""
)
# Generate response
prompt = prompt_template.invoke({"context": context, "query": query})
print(prompt)
response = llm.invoke(prompt)
# Parse and return response
parsed = parse_xml_and_check(response.content)
return parsed, reranked
except Exception as e:
logging.error(f"Error in RAG function: {str(e)}")
return f"An error occurred while processing your query: {str(e)}", []