import streamlit as st import os import json from dotenv import load_dotenv # from langchain.chains import RetrievalQA from langchain_community.vectorstores import FAISS from langchain.text_splitter import CharacterTextSplitter from langchain_openai import ChatOpenAI, OpenAIEmbeddings, OpenAI from langchain.schema import Document from langchain_huggingface import HuggingFaceEmbeddings from langchain.chains.combine_documents import create_stuff_documents_chain from langchain.chains.retrieval import create_retrieval_chain from langchain_core.prompts import PromptTemplate # Load environment variables load_dotenv() # Get the OpenAI API key from the environment OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") if not OPENAI_API_KEY: st.error("OPENAI_API_KEY is not set. Please add it to your .env file.") # Initialize session state variables if 'vector_store' not in st.session_state: st.session_state.vector_store = None # if 'qa_chain' not in st.session_state: # st.session_state.qa_chain = None # def setup_qa_chain(vector_store): # """Set up the QA chain with a retriever.""" # retriever = vector_store.as_retriever(search_kwargs={"k": 3}) # llm = ChatOpenAI(model="gpt-3.5-turbo", openai_api_key=OPENAI_API_KEY) # qa_chain = RetrievalQA.from_chain_type(llm=llm, retriever=retriever, return_source_documents=True) # return qa_chain prompt_template = PromptTemplate.from_template("Answer the following query based on a number of context documents Query:{query},Context:{context},Answer:") def main(): # Set page title and header llm = ChatOpenAI(model="gpt-3.5-turbo", openai_api_key=OPENAI_API_KEY) st.set_page_config(page_title="LibRAG", page_icon="📚") st.title("Boston Public Library Database 📚") embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") # Sidebar for initialization # st.sidebar.header("Initialize Knowledge Base") # if st.sidebar.button("Load Data"): # try: # st.session_state.vector_store = FAISS.load_local( # "vector-store", embeddings, allow_dangerous_deserialization=True # ) # st.session_state.qa_chain = setup_qa_chain(st.session_state.vector_store) # st.sidebar.success("Knowledge base loaded successfully!") # except Exception as e: # st.sidebar.error(f"Error loading data: {e}") st.session_state.vector_store = FAISS.load_local("vector-store", embeddings, allow_dangerous_deserialization=True) st.session_state.combine_docs_chain = create_stuff_documents_chain(llm, prompt_template) st.session_stateretrieval_chain = create_retrieval_chain(st.session_state.vector_store.as_retriever(search_kwargs={"k": 3}), combine_docs_chain) # st.session_state.qa_chain = setup_qa_chain(st.session_state.vector_store) # Query input and processing st.header("Ask a Question") query = st.text_input("Enter your question about BPL's database") response = llm.invoke() if query: # Check if vector store and QA chain are initialized if st.session_state.response is None: st.warning("Please load the knowledge base first using the sidebar.") else: # Run the query try: st.session_state.response = retrieval_chain.invoke({"input": f"{query}"}) # Display answer st.subheader("Answer") st.write(response["result"]) # Display sources st.subheader("Sources") sources = response["source_documents"] for i, doc in enumerate(sources, 1): with st.expander(f"Source {i}"): st.write(f"**Content:** {doc.page_content}") st.write(f"**URL:** {doc.metadata.get('url', 'No URL available')}") except Exception as e: st.error(f"An error occurred: {e}") if __name__ == "__main__": main()