import streamlit as st import os from typing import List, Tuple, Optional from pinecone import Pinecone from langchain_pinecone import PineconeVectorStore from langchain_huggingface import HuggingFaceEmbeddings from langchain_openai import ChatOpenAI from langchain_core.prompts import PromptTemplate from dotenv import load_dotenv from RAG import RAG import logging # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Page configuration st.set_page_config( page_title="Boston Public Library Chatbot", page_icon="🤖", layout="wide" ) def initialize_models() -> Tuple[Optional[ChatOpenAI], HuggingFaceEmbeddings]: """Initialize the language model and embeddings.""" try: load_dotenv() if "llm" not in st.session_state: # Initialize OpenAI model st.session_state.llm = ChatOpenAI( model="gpt-4", # Changed from gpt-4o-mini which appears to be a typo temperature=0, timeout=60, # Added reasonable timeout max_retries=2 ) if "embeddings" not in st.session_state: # Initialize embeddings st.session_state.embeddings = HuggingFaceEmbeddings( model_name="sentence-transformers/all-MiniLM-L6-v2" ) if "pinecone" not in st.session_state: pinecone_api_key = os.getenv("PINECONE_API_KEY") INDEX_NAME = 'bpl-rag' #initialize vectorstore pc = Pinecone(api_key=pinecone_api_key) index = pc.Index(INDEX_NAME) st.session_state.pinecone = PineconeVectorStore(index=index, embedding=st.session_state.embeddings) except Exception as e: logger.error(f"Error initializing models: {str(e)}") st.error(f"Failed to initialize models: {str(e)}") return None, None def process_message( query: str, llm: ChatOpenAI, vectorstore: PineconeVectorStore, ) -> Tuple[str, List]: """Process the user message using the RAG system.""" try: response, sources = RAG( query=query, llm=llm, vectorstore=vectorstore, ) return response, sources except Exception as e: logger.error(f"Error in process_message: {str(e)}") return f"Error processing message: {str(e)}", [] def display_sources(sources: List) -> None: """Display sources in expandable sections with proper formatting.""" if not sources: st.info("No sources available for this response.") return st.subheader("Sources") for i, doc in enumerate(sources, 1): try: with st.expander(f"Source {i}"): if hasattr(doc, 'page_content'): st.markdown(f"**Content:** {doc.page_content}") if hasattr(doc, 'metadata'): for key, value in doc.metadata.items(): st.markdown(f"**{key.title()}:** {value}") else: st.markdown(f"**Content:** {str(doc)}") except Exception as e: logger.error(f"Error displaying source {i}: {str(e)}") st.error(f"Error displaying source {i}") def main(): st.title("Digital Commonwealth RAG") INDEX_NAME = 'bpl-rag' # Initialize session state if "messages" not in st.session_state: st.session_state.messages = [] # Initialize models initialize_models() # Display chat history for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) # Chat input user_input = st.chat_input("Type your query here...") if user_input: # Display user message with st.chat_message("user"): st.markdown(user_input) st.session_state.messages.append({"role": "user", "content": user_input}) # Process and display assistant response with st.chat_message("assistant"): with st.spinner("Let Me Think..."): response, sources = process_message( query=user_input, llm=st.session_state.llm, vectorstore=st.session_state.pinecone ) if isinstance(response, str): st.markdown(response) st.session_state.messages.append({ "role": "assistant", "content": response }) # Display sources display_sources(sources) else: st.error("Received an invalid response format") # Footer st.markdown("---") st.markdown( "Built with ❤️ using Streamlit + LangChain + OpenAI", help="An AI-powered chatbot with RAG capabilities" ) if __name__ == "__main__": main()