aakash0017's picture
Update app.py
8efa67d
import whisper
import cv2
import os
import urllib.request
from PIL import Image
from ultralytics import YOLO
import torch
import matplotlib.pyplot as plt
from tqdm import tqdm
from transformers import pipeline
import moviepy.editor as mp
import json
import re
import gradio as gr
from openai import OpenAI
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain.chat_models import ChatOpenAI
from langchain.prompts import HumanMessagePromptTemplate
from langchain.schema.messages import SystemMessage
from langchain.prompts import ChatPromptTemplate
def video_transcription(video_path):
model = whisper.load_model('medium')
transcript = model.transcribe(video_path, verbose = True, language = 'en')
print(transcript)
return json.dumps(transcript)
def action_detection(json_object, openai_key):
transcript = json.loads(json_object)
transcript_string = ''
for segments in transcript['segments']:
transcript_string+=str(segments['text']+'\n')
chunks = []
output = {}
count = 0
split_transcript = transcript_string.split("\n")
num_lines = len(split_transcript)
num_chars = 0
i = 0
prev = 0
while i < num_lines:
num_chars+=len(split_transcript[i])
if num_chars>=16000:
chunks.append("\n".join(split_transcript[prev:i]))
prev = i
num_chars = 0
i+=1
if i == num_lines:
chunks.append("\n".join(split_transcript[prev:i]))
# client = OpenAI(api_key = openai_key)
llm = OpenAI(openai_api_key=openai_key, model="gpt-4")
chat_template = ChatPromptTemplate.from_messages(
[
SystemMessage(
content=(
"You are an AI system specialized in detecting planning issues, critiquing plans, and analyzing conversations between police officers regarding how to disperse."
"Additionally, identify any instances suggesting 1st Amendment violations, criticizing the lack of a plan, and aggressive comments. Transcript:\n\n{transcript_}\n\n."
"Give response only in the json format for example: \{\"1\": \"What should we do now. I don't have a clue?\", \"2\": \"what the fuck is this\", \"3\":\"Beat the fuck out of them\"\}."
"There can be multiple instances, find out all of them. If you do not find anything just return {\"None\":\"None\"}"
)
),
HumanMessagePromptTemplate.from_template("{transcript_}"),
]
)
for i in chunks:
prompt = PromptTemplate.from_template(
"You are an AI system specialized in detecting planning issues, critiquing plans, and analyzing conversations between police officers regarding how to disperse. Additionally, identify any instances suggesting 1st Amendment violations, criticizing the lack of a plan, and aggressive comments. Transcript:\n\n{i}\n\n. Give response only in the json format for example: \{\"1\": \"What should we do now. I don't have a clue?\", \"2\": \"what the fuck is this\", \"3\":\"Beat the fuck out of them\"\}. There can be multiple instances, find out all of them. If you do not find anything just return {\"None\":\"None\"}"
)
llm = ChatOpenAI(openai_api_key=openai_key)
p = chat_template.format_messages(transcript_=i)
gpt_output = llm(p).content
# print(gpt_output)
# gpt_output = completion.choices[0].message.content
# print(gpt_output)
gpt_output = dict(json.loads(gpt_output))
for j in gpt_output.values():
output[count] = j
count+=1
sent_with_time = []
for sentence_to_search in output.values():
pattern = re.compile(re.escape(sentence_to_search), re.IGNORECASE)
matching_entries = [entry for entry in transcript['segments'] if re.search(pattern, entry['text'])]
if matching_entries:
for entry in matching_entries:
hours_s, remainder = divmod(entry['start'], 3600)
minutes_s, seconds_s = divmod(remainder, 60)
hours_s = str(int(hours_s)).zfill(2)
minutes_s = str(int(minutes_s)).zfill(2)
seconds_s = str(int(seconds_s)).zfill(2)
hours_e, remainder = divmod(entry['end'], 3600)
minutes_e, seconds_e = divmod(remainder, 60)
hours_e = str(int(hours_e)).zfill(2)
minutes_e = str(int(minutes_e)).zfill(2)
seconds_e = str(int(seconds_e)).zfill(2)
sent_with_time.append(sentence_to_search + ' Start Time: ' + str(hours_s) + ":" + str(minutes_s) + ":" + str(seconds_s) + ' End Time: ' + str(hours_e) + ":" + str(minutes_e) + ":" + str(seconds_e))
return "\n".join(sent_with_time)
def process_video(video_path, weights):
try:
# This code cell detects batons in the video
current_frame = 0
model = YOLO(weights)
cap = cv2.VideoCapture(video_path)
fps = int(cap.get(cv2.CAP_PROP_FPS))
conseq_frames = 0
start_time = ""
end_time = ""
res = []
while True:
ret, frame = cap.read()
if not ret:
break
# Detecting baton on one frame per second
if current_frame % fps == 0:
currect_sec = current_frame/fps
# Model prediction on current frame
results = model(frame, verbose = False)
count = 0
classes = results[0].boxes.data
# Formatting the time for printing
hours, remainder = divmod(currect_sec, 3600)
minutes, seconds = divmod(remainder, 60)
hours = str(int(hours)).zfill(2)
minutes = str(int(minutes)).zfill(2)
seconds = str(int(seconds)).zfill(2)
for i in classes:
# Checking if baton is detected (i.e. if the class corresponding to baton is 1 or not)
if float(i[5]) == 1:
count+=1
# Marking the start_time if this is the first consecutive frame a baton is detected in
if count >= 1:
conseq_frames+=1
if conseq_frames == 1:
start_time = hours + ":" + minutes + ":" + seconds
# Marking the end time if after one or multiple consecutive frames of detection, a baton is not detected
else:
if conseq_frames > 0:
conseq_frames = 0
end_time = hours + ":" + minutes + ":" + seconds
# Printing time intervals in which baton was detected
res.append(start_time + " to " + end_time)
start_time = ""
end_time = ""
current_frame += 1
cap.release()
return "\n".join(res)
except Exception as e:
return e
# def all_funcs(openai_key,video_path, yolo_weights, pr = gr.Progress(track_tqdm = True)):
# video_path = video_path[0].split('/')[-1]
# yolo_weights = yolo_weights[0].split('/')[-1]
# transcript = video_transcription(video_path)
# sentences = action_detection(transcript, openai_key)
# batons = process_video(video_path, yolo_weights)
# print("ALL FUNC Executed without errors")
# return sentences, batons
import zipfile
import smtplib
import ssl
from email.message import EmailMessage
def all_funcs(openai_key, zip_path, yolo_weights, email, pr = gr.Progress(track_tqdm = True)):
sentences = {}
batons = {}
count = 1
print(zip_path)
with zipfile.ZipFile(zip_path[0].split("/")[-1], "r") as zip_ref:
for filename in zip_ref.namelist():
# Inn 2 lines mein error aa sakta hai
zip_ref.extract(filename)
# video_path = filename[0].split('/')[-1]
video_path = filename
print(video_path)
yolo_weights = yolo_weights
print(yolo_weights)
try:
transcript = video_transcription(video_path)
print(transcript)
video_name = "Video " + str(count)
sentences[video_name] = action_detection(transcript, openai_key)
print(sentences[video_name])
batons[video_name] = process_video(video_path, yolo_weights[0])
print("batons ", batons)
count+=1
except Exception as e:
print(e)
continue
email_sender = 'bodycam1211@gmail.com'
email_password = 'evmt luaz mgoi iapl'
email_receiver = email
# Set the subject and body of the email
subject = 'Timestamps Detection Complete'
result = ""
for i in sentences.keys():
result = result + i + "\n"
result = "-" + result + sentences[i] + "\n"
result = result + "Batons time stamp: " + "\n"
result = result + batons[i] + "\n\n"
body = "Here are the results of your detected timestamps:\n" + result
em = EmailMessage()
em['From'] = email_sender
em['To'] = email_receiver
em['Subject'] = subject
em.set_content(body)
# Add SSL (layer of security)
# context = ssl.create_default_context()
# Log in and send the email
# with smtplib.SMTP_SSL('smtp.gmail.com', 1024, context=context) as smtp:
# smtp.login(email_sender, email_password)
# smtp.sendmail(email_sender, email_receiver, em.as_string())
print("ALL FUNC Executed without errors")
return sentences, batons
btn = gr.Interface(
fn = all_funcs,
inputs = ["text", gr.Files(label = "Select Zip File"), gr.Files(label = "Select YOLOv8 Weights File"), "text"],
outputs=[gr.Textbox(label = "Audio Analysis Time Stamps", lines = 20), gr.Textbox(label = "Baton Detection Timestamps", lines = 20)]
)
btn.launch(server_name="0.0.0.0")