Spaces:
No application file
No application file
File size: 9,920 Bytes
e6bda0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import whisper
import cv2
import os
import urllib.request
from PIL import Image
from ultralytics import YOLO
import torch
import matplotlib.pyplot as plt
from tqdm import tqdm
from transformers import pipeline
import moviepy.editor as mp
import json
import re
import gradio as gr
from openai import OpenAI
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain.chat_models import ChatOpenAI
from langchain.prompts import HumanMessagePromptTemplate
from langchain.schema.messages import SystemMessage
from langchain.prompts import ChatPromptTemplate
def video_transcription(video_path):
model = whisper.load_model('medium')
transcript = model.transcribe(video_path, verbose = True, language = 'en')
print(transcript)
return json.dumps(transcript)
def action_detection(json_object, openai_key):
transcript = json.loads(json_object)
transcript_string = ''
for segments in transcript['segments']:
transcript_string+=str(segments['text']+'\n')
chunks = []
output = {}
count = 0
split_transcript = transcript_string.split("\n")
num_lines = len(split_transcript)
num_chars = 0
i = 0
prev = 0
while i < num_lines:
num_chars+=len(split_transcript[i])
if num_chars>=16000:
chunks.append("\n".join(split_transcript[prev:i]))
prev = i
num_chars = 0
i+=1
if i == num_lines:
chunks.append("\n".join(split_transcript[prev:i]))
# client = OpenAI(api_key = openai_key)
llm = OpenAI(openai_api_key=openai_key, model="gpt-4")
chat_template = ChatPromptTemplate.from_messages(
[
SystemMessage(
content=(
"You are an AI system specialized in detecting planning issues, critiquing plans, and analyzing conversations between police officers regarding how to disperse."
"Additionally, identify any instances suggesting 1st Amendment violations, criticizing the lack of a plan, and aggressive comments. Transcript:\n\n{transcript_}\n\n."
"Give response only in the json format for example: \{\"1\": \"What should we do now. I don't have a clue?\", \"2\": \"what the fuck is this\", \"3\":\"Beat the fuck out of them\"\}."
"There can be multiple instances, find out all of them. If you do not find anything just return {\"None\":\"None\"}"
)
),
HumanMessagePromptTemplate.from_template("{transcript_}"),
]
)
for i in chunks:
prompt = PromptTemplate.from_template(
"You are an AI system specialized in detecting planning issues, critiquing plans, and analyzing conversations between police officers regarding how to disperse. Additionally, identify any instances suggesting 1st Amendment violations, criticizing the lack of a plan, and aggressive comments. Transcript:\n\n{i}\n\n. Give response only in the json format for example: \{\"1\": \"What should we do now. I don't have a clue?\", \"2\": \"what the fuck is this\", \"3\":\"Beat the fuck out of them\"\}. There can be multiple instances, find out all of them. If you do not find anything just return {\"None\":\"None\"}"
)
llm = ChatOpenAI(openai_api_key=openai_key)
p = chat_template.format_messages(transcript_=i)
gpt_output = llm(p).content
# print(gpt_output)
# gpt_output = completion.choices[0].message.content
# print(gpt_output)
gpt_output = dict(json.loads(gpt_output))
for j in gpt_output.values():
output[count] = j
count+=1
sent_with_time = []
for sentence_to_search in output.values():
pattern = re.compile(re.escape(sentence_to_search), re.IGNORECASE)
matching_entries = [entry for entry in transcript['segments'] if re.search(pattern, entry['text'])]
if matching_entries:
for entry in matching_entries:
hours_s, remainder = divmod(entry['start'], 3600)
minutes_s, seconds_s = divmod(remainder, 60)
hours_s = str(int(hours_s)).zfill(2)
minutes_s = str(int(minutes_s)).zfill(2)
seconds_s = str(int(seconds_s)).zfill(2)
hours_e, remainder = divmod(entry['end'], 3600)
minutes_e, seconds_e = divmod(remainder, 60)
hours_e = str(int(hours_e)).zfill(2)
minutes_e = str(int(minutes_e)).zfill(2)
seconds_e = str(int(seconds_e)).zfill(2)
sent_with_time.append(sentence_to_search + ' Start Time: ' + str(hours_s) + ":" + str(minutes_s) + ":" + str(seconds_s) + ' End Time: ' + str(hours_e) + ":" + str(minutes_e) + ":" + str(seconds_e))
return "\n".join(sent_with_time)
def process_video(video_path, weights):
try:
# This code cell detects batons in the video
current_frame = 0
model = YOLO(weights)
cap = cv2.VideoCapture(video_path)
fps = int(cap.get(cv2.CAP_PROP_FPS))
conseq_frames = 0
start_time = ""
end_time = ""
res = []
while True:
ret, frame = cap.read()
if not ret:
break
# Detecting baton on one frame per second
if current_frame % fps == 0:
currect_sec = current_frame/fps
# Model prediction on current frame
results = model(frame, verbose = False)
count = 0
classes = results[0].boxes.data
# Formatting the time for printing
hours, remainder = divmod(currect_sec, 3600)
minutes, seconds = divmod(remainder, 60)
hours = str(int(hours)).zfill(2)
minutes = str(int(minutes)).zfill(2)
seconds = str(int(seconds)).zfill(2)
for i in classes:
# Checking if baton is detected (i.e. if the class corresponding to baton is 1 or not)
if float(i[5]) == 1:
count+=1
# Marking the start_time if this is the first consecutive frame a baton is detected in
if count >= 1:
conseq_frames+=1
if conseq_frames == 1:
start_time = hours + ":" + minutes + ":" + seconds
# Marking the end time if after one or multiple consecutive frames of detection, a baton is not detected
else:
if conseq_frames > 0:
conseq_frames = 0
end_time = hours + ":" + minutes + ":" + seconds
# Printing time intervals in which baton was detected
res.append(start_time + " to " + end_time)
start_time = ""
end_time = ""
current_frame += 1
cap.release()
return "\n".join(res)
except Exception as e:
return e
# def all_funcs(openai_key,video_path, yolo_weights, pr = gr.Progress(track_tqdm = True)):
# video_path = video_path[0].split('/')[-1]
# yolo_weights = yolo_weights[0].split('/')[-1]
# transcript = video_transcription(video_path)
# sentences = action_detection(transcript, openai_key)
# batons = process_video(video_path, yolo_weights)
# print("ALL FUNC Executed without errors")
# return sentences, batons
import zipfile
import smtplib
import ssl
from email.message import EmailMessage
def all_funcs(openai_key, zip_path, yolo_weights, email, pr = gr.Progress(track_tqdm = True)):
sentences = {}
batons = {}
count = 1
print(zip_path)
with zipfile.ZipFile(zip_path[0].split("/")[-1], "r") as zip_ref:
for filename in zip_ref.namelist():
# Inn 2 lines mein error aa sakta hai
zip_ref.extract(filename)
# video_path = filename[0].split('/')[-1]
video_path = filename
print(video_path)
yolo_weights = yolo_weights
print(yolo_weights)
try:
transcript = video_transcription(video_path)
print(transcript)
video_name = "Video " + str(count)
sentences[video_name] = action_detection(transcript, openai_key)
print(sentences[video_name])
batons[video_name] = process_video(video_path, yolo_weights[0])
print("batons ", batons)
count+=1
except Exception as e:
print(e)
continue
email_sender = 'bodycam1211@gmail.com'
email_password = 'evmt luaz mgoi iapl'
email_receiver = email
# Set the subject and body of the email
subject = 'Timestamps Detection Complete'
result = ""
for i in sentences.keys():
result = result + i + "\n"
result = "-" + result + sentences[i] + "\n"
result = result + "Batons time stamp: " + "\n"
result = result + batons[i] + "\n\n"
body = "Here are the results of your detected timestamps:\n" + result
em = EmailMessage()
em['From'] = email_sender
em['To'] = email_receiver
em['Subject'] = subject
em.set_content(body)
# Add SSL (layer of security)
context = ssl.create_default_context()
# Log in and send the email
with smtplib.SMTP_SSL('smtp.gmail.com', 465, context=context) as smtp:
smtp.login(email_sender, email_password)
smtp.sendmail(email_sender, email_receiver, em.as_string())
print("ALL FUNC Executed without errors")
return sentences, batons
btn = gr.Interface(
fn = all_funcs,
inputs = ["text", gr.Files(label = "Select Zip File"), gr.Files(label = "Select YOLOv8 Weights File"), "text"],
outputs=[gr.Textbox(label = "Audio Analysis Time Stamps", lines = 20), gr.Textbox(label = "Baton Detection Timestamps", lines = 20)]
)
btn.launch(server_name="0.0.0.0", server_port=7860) |