File size: 8,202 Bytes
6155c0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import numpy as np
import pandas as pd
import cv2
import torch
import warnings
from detectron2.config import get_cfg
from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
import ffmpeg
import pytorchvideo
from pytorchvideo.transforms.functional import (
    uniform_temporal_subsample,
    short_side_scale_with_boxes,
    clip_boxes_to_image
)
from torchvision.transforms._functional_video import normalize
from pytorchvideo.data.ava import AvaLabeledVideoFramePaths
from pytorchvideo.models.hub import slowfast_r50_detection # Another option is slow_r50_detection
from visualization import VideoVisualizer


# This method takes in an image and generates the bounding boxes for people in the image.
def get_person_bboxes(inp_img, predictor):
    predictions = predictor(inp_img.cpu().detach().numpy())['instances'].to('cpu')
    boxes = predictions.pred_boxes if predictions.has("pred_boxes") else None
    scores = predictions.scores if predictions.has("scores") else None
    classes = np.array(predictions.pred_classes.tolist() if predictions.has("pred_classes") else None)
    predicted_boxes = boxes[np.logical_and(classes==0, scores>0.75 )].tensor.cpu() # only person
    return predicted_boxes


def ava_inference_transform(
    clip,
    boxes,
    num_frames = 32, # 4 if using slowfast_r50_detection, change this to 32
    crop_size = 256,
    data_mean = [0.45, 0.45, 0.45],
    data_std = [0.225, 0.225, 0.225],
    slow_fast_alpha = 4, # if using slowfast_r50_detection, change None to 4
    device = 'cpu'): 

    boxes = np.array(boxes)
    ori_boxes = boxes.copy()

    # Image [0, 255] -> [0, 1].
    clip = uniform_temporal_subsample(clip, num_frames)
    clip = clip.float()
    clip = clip / 255.0

    height, width = clip.shape[2], clip.shape[3]
    # The format of boxes is [x1, y1, x2, y2]. The input boxes are in the
    # range of [0, width] for x and [0,height] for y
    boxes = clip_boxes_to_image(boxes, height, width)

    # Resize short side to crop_size. Non-local and STRG uses 256.
    clip, boxes = short_side_scale_with_boxes(clip, size=crop_size, boxes=boxes)

    # Normalize images by mean and std.
    clip = normalize(clip, np.array(data_mean, dtype=np.float32), np.array(data_std, dtype=np.float32))

    boxes = clip_boxes_to_image(boxes, clip.shape[2],  clip.shape[3])

    # Incase of slowfast, generate both pathways
    if slow_fast_alpha is not None:
        fast_pathway = clip
        # Perform temporal sampling from the fast pathway.
        slow_pathway = torch.index_select(clip, 1, torch.linspace(
            0, clip.shape[1] - 1, clip.shape[1] // slow_fast_alpha).long())
        clip = [slow_pathway.unsqueeze(0).to(device), fast_pathway.unsqueeze(0).to(device)]

    return clip, torch.from_numpy(boxes), ori_boxes

# get video info
def with_opencv(filename):
    video = cv2.VideoCapture(filename)
    frame_count = video.get(cv2.CAP_PROP_FRAME_COUNT)
    fps = video.get(cv2.CAP_PROP_FPS)
    s = round(frame_count / fps)
    video.release()
    return int(s), fps


def slow_fast_train(file_path, gpu=False):
    device = 'cuda' if gpu else 'cpu'
    top_k = 1

    video_model = slowfast_r50_detection(True) # Another option is slow_r50_detection(True) 
    video_model = video_model.eval().to(device)
    cfg = get_cfg()
    cfg.merge_from_file(model_zoo.get_config_file("COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml"))
    cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.55  # set threshold for this model
    cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml")
    cfg.MODEL.DEVICE = device
    predictor = DefaultPredictor(cfg)
    # Create an id to label name mapping
    label_map, allowed_class_ids = AvaLabeledVideoFramePaths.read_label_map('ava_action_list.pbtxt')
    # Create a video visualizer that can plot bounding boxes and visualize actions on bboxes.
    video_visualizer = VideoVisualizer(81, label_map, top_k=top_k, mode="thres",thres=0.5) #get top3 predictions show in each bounding box

    #preprocess video data
    encoded_vid = pytorchvideo.data.encoded_video.EncodedVideo.from_path(file_path)

    # Video predictions are generated each frame/second for the wholevideo.
    total_sec, fps = with_opencv(file_path)
    time_stamp_range = range(0, total_sec) # time stamps in video for which clip is sampled
    clip_duration = 1.0 # Duration of clip used for each inference step.
    gif_imgs = []
    xleft, ytop, xright, ybottom = [], [], [], []
    labels = []
    time_frame = []
    scores = []

    for time_stamp in time_stamp_range:

        # Generate clip around the designated time stamps
        inp_imgs = encoded_vid.get_clip(
            time_stamp - clip_duration/2.0,
            time_stamp + clip_duration/2.0)  
        inp_imgs = inp_imgs['video']

        #if time_stamp % 15 == 0:
            # Generate people bbox predictions using Detectron2's off the self pre-trained predictor
            # We use the the middle image in each clip to generate the bounding boxes.
        inp_img = inp_imgs[:,inp_imgs.shape[1]//2,:,:]
        inp_img = inp_img.permute(1,2,0)
    
        # Predicted boxes are of the form List[(x_1, y_1, x_2, y_2)]
        predicted_boxes = get_person_bboxes(inp_img, predictor)
        if len(predicted_boxes) == 0:
            print("Skipping clip no frames detected at time stamp: ", time_stamp)
            continue
        
        # Preprocess clip and bounding boxes for video action recognition.
        inputs, inp_boxes, _ = ava_inference_transform(inp_imgs, predicted_boxes.numpy(), device=device)
        # Prepend data sample id for each bounding box.
        # For more details refere to the RoIAlign in Detectron2
        inp_boxes = torch.cat([torch.zeros(inp_boxes.shape[0],1), inp_boxes], dim=1)
        
        # Generate actions predictions for the bounding boxes in the clip.
        # The model here takes in the pre-processed video clip and the detected bounding boxes.
        preds = video_model(inputs, inp_boxes.to(device)) #change inputs to inputs.unsqueeze(0).to(device) if using slow_r50
        
        preds = preds.to('cpu')
        # The model is trained on AVA and AVA labels are 1 indexed so, prepend 0 to convert to 0 index.
        preds = torch.cat([torch.zeros(preds.shape[0],1), preds], dim=1)

        # Plot predictions on the video and save for later visualization.
        inp_imgs = inp_imgs.permute(1,2,3,0)
        inp_imgs = inp_imgs/255.0
        out_img_pred = video_visualizer.draw_clip_range(inp_imgs, preds, predicted_boxes)
        gif_imgs += out_img_pred

        #format of bboxes(x_left, y_top, x_right, y_bottom)
        predicted_boxes_lst = predicted_boxes.tolist()
        topscores, topclasses = torch.topk(preds, k=1)
        topscores, topclasses = topscores.tolist(), topclasses.tolist()
        topclasses = np.concatenate(topclasses)
        topscores = np.concatenate(topscores)
                 
        #add top 1 prediction of behaviors in each time step
        for i in range(len(predicted_boxes_lst)):
            xleft.append(predicted_boxes_lst[i][0])
            ytop.append(predicted_boxes_lst[i][1])
            xright.append(predicted_boxes_lst[i][2])
            ybottom.append(predicted_boxes_lst[i][3])
            labels.append(label_map.get(topclasses[i]))
            time_frame.append(time_stamp)
            scores.append(topscores[i])

    print("Finished generating predictions.")
    # Generate Metadata file
    metadata = pd.DataFrame()
    metadata['frame'] = time_frame
    metadata['x_left'] = xleft
    metadata['y_top'] = ytop
    metadata['x_right'] = xright
    metadata['y_bottom'] = ybottom
    metadata['label'] = labels
    metadata['confidence'] = scores
            
    height, width = gif_imgs[0].shape[0], gif_imgs[0].shape[1]
    video_save_path = 'activity_recognition.mp4'
    video = cv2.VideoWriter(video_save_path, cv2.VideoWriter_fourcc(*'mp4v'), int(fps), (width, height))
    
    for image in gif_imgs:
        img = (255*image).astype(np.uint8)
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        video.write(img)
    video.release()

    return video_save_path, metadata