import streamlit as st
import sparknlp
from sparknlp.base import *
from sparknlp.annotator import *
from pyspark.ml import Pipeline
# Page configuration
st.set_page_config(
layout="wide",
initial_sidebar_state="auto"
)
# CSS for styling
st.markdown("""
""", unsafe_allow_html=True)
@st.cache_resource
def init_spark():
return sparknlp.start()
@st.cache_resource
def create_pipeline(model, task):
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("documents")
t5 = T5Transformer.pretrained(model) \
.setTask(task) \
.setInputCols(["documents"]) \
.setMaxOutputLength(200) \
.setOutputCol("transfers")
pipeline = Pipeline().setStages([documentAssembler, t5])
return pipeline
def fit_data(pipeline, data):
df = spark.createDataFrame([[data]]).toDF("text")
result = pipeline.fit(df).transform(df)
return result.select('transfers.result').collect()
# Sidebar setup
model = st.sidebar.selectbox(
"Choose the Pretrained Model",
['t5_active_to_passive_styletransfer', 't5_passive_to_active_styletransfer'],
help="Select the model you want to use for style transfer."
)
# Reference notebook link in sidebar
st.sidebar.markdown('Reference notebook:')
st.sidebar.markdown(
"""
""",
unsafe_allow_html=True
)
examples = {
"t5_active_to_passive_styletransfer": [
"I am writing you a letter.",
"Reporters write news reports.",
"The company will hire new workers.",
"Emma writes a letter.",
"We did not grow rice.",
"People will admire him.",
"Someone has stolen my purse."
],
"t5_passive_to_active_styletransfer": [
"At dinner, six shrimp were eaten by Harry.",
"The savannah is roamed by beautiful giraffes.",
"The flat tire was changed by Sue.",
"The students' questions are always answered by the teacher."
]
}
task_descriptions = {
"t5_active_to_passive_styletransfer": "Transfer Active to Passive:",
"t5_passive_to_active_styletransfer": "Transfer Passive to Active:"
}
# Set up the page layout
title = "Switch Between Active and Passive Voice"
sub_title = "Effortlessly Transform Sentences and Explore Different Writing Styles"
st.markdown(f'