File size: 17,621 Bytes
14e4843 2d754ab 14e4843 034968f 14e4843 d936aea 14e4843 034968f 14e4843 a4a186c d10adef a4a186c d10adef 14e4843 d6d7ec6 14e4843 2d754ab 14e4843 d6d7ec6 14e4843 d6d7ec6 14e4843 d6d7ec6 14e4843 d936aea 034968f 14e4843 d6d7ec6 d936aea d6d7ec6 14e4843 d6d7ec6 d936aea d6d7ec6 14e4843 88d1c0e 034968f 14e4843 d6d7ec6 88d1c0e 14e4843 d6d7ec6 14e4843 d6d7ec6 14e4843 d6d7ec6 14e4843 d6d7ec6 14e4843 d6d7ec6 14e4843 d6d7ec6 14e4843 d6d7ec6 14e4843 d6d7ec6 14e4843 d6d7ec6 14e4843 d6d7ec6 14e4843 d6d7ec6 14e4843 d6d7ec6 14e4843 d6d7ec6 14e4843 d6d7ec6 14e4843 2d754ab d6d7ec6 d936aea 2d754ab 14e4843 2d754ab d6d7ec6 14e4843 034968f 14e4843 034968f b3946ef 14e4843 b3946ef 14e4843 b3946ef 14e4843 b3946ef 14e4843 b3946ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 |
#!/usr/bin/env python
import os
import json
import argparse
import socket
import random
import threading
from datetime import datetime
from src.backend.run_eval_suite import run_evaluation
from src.backend.manage_requests import check_completed_evals, get_eval_requests, set_eval_request
from src.backend.sort_queue import sort_models_by_priority
from src.backend.envs import Tasks, EVAL_REQUESTS_PATH_BACKEND, EVAL_RESULTS_PATH_BACKEND, DEVICE, Task
from src.backend.manage_requests import EvalRequest
from src.leaderboard.read_evals import EvalResult
from src.envs import QUEUE_REPO, RESULTS_REPO, API
from src.utils import my_snapshot_download, analyze_gpu_stats, parse_nvidia_smi, monitor_gpus
from src.leaderboard.read_evals import get_raw_eval_results
from typing import Optional
import time
import pprint
import logging
# Configure the root logger
logging.basicConfig(
format="%(asctime)s,%(msecs)03d %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s",
datefmt="%Y-%m-%d:%H:%M:%S",
level=logging.WARNING,
)
# Get the 'lm-eval' logger from the third-party library
eval_logger = logging.getLogger("lm-eval")
# Explicitly set the level for 'lm-eval' logger to WARNING
eval_logger.setLevel(logging.WARNING)
def my_set_eval_request(api, eval_request, set_to_status, hf_repo, local_dir):
for i in range(10):
try:
set_eval_request(
api=api, eval_request=eval_request, set_to_status=set_to_status, hf_repo=hf_repo, local_dir=local_dir
)
return
except Exception as e:
print(f"Error setting eval request to {set_to_status}: {e}. Retrying in 60 seconds")
time.sleep(60)
return
logging.getLogger("openai").setLevel(logging.WARNING)
logging.basicConfig(level=logging.ERROR)
pp = pprint.PrettyPrinter(width=80)
PENDING_STATUS = "PENDING"
RUNNING_STATUS = "RUNNING"
FINISHED_STATUS = "FINISHED"
FAILED_STATUS = "FAILED"
TASKS_HARNESS = [task.value for task in Tasks]
my_snapshot_download(
repo_id=RESULTS_REPO, revision="main", local_dir=EVAL_RESULTS_PATH_BACKEND, repo_type="dataset", max_workers=60
)
my_snapshot_download(
repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60
)
def sanity_checks():
print(f"Device: {DEVICE}")
# pull the eval dataset from the hub and parse any eval requests
# check completed evals and set them to finished
my_snapshot_download(
repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60
)
check_completed_evals(
api=API,
checked_status=RUNNING_STATUS,
completed_status=FINISHED_STATUS,
failed_status=FAILED_STATUS,
hf_repo=QUEUE_REPO,
local_dir=EVAL_REQUESTS_PATH_BACKEND,
hf_repo_results=RESULTS_REPO,
local_dir_results=EVAL_RESULTS_PATH_BACKEND,
)
return
def request_to_result_name(request: EvalRequest) -> str:
# Request: EvalRequest(model='meta-llama/Llama-2-13b-hf', private=False, status='FINISHED',
# json_filepath='./eval-queue-bk/meta-llama/Llama-2-13b-hf_eval_request_False_False_False.json',
# weight_type='Original', model_type='pretrained', precision='float32', base_model='', revision='main',
# submitted_time='2023-09-09T10:52:17Z', likes=389, params=13.016, license='?')
#
# EvalResult(eval_name='meta-llama_Llama-2-13b-hf_float32', full_model='meta-llama/Llama-2-13b-hf',
# org='meta-llama', model='Llama-2-13b-hf', revision='main',
# results={'nq_open': 33.739612188365655, 'triviaqa': 74.12505572893447},
# precision=<Precision.float32: ModelDetails(name='float32', symbol='')>,
# model_type=<ModelType.PT: ModelDetails(name='pretrained', symbol='🟢')>,
# weight_type=<WeightType.Original: ModelDetails(name='Original', symbol='')>,
# architecture='LlamaForCausalLM', license='?', likes=389, num_params=13.016, date='2023-09-09T10:52:17Z', still_on_hub=True)
#
org_and_model = request.model.split("/", 1)
if len(org_and_model) == 1:
model = org_and_model[0]
res = f"{model}_{request.precision}"
else:
org = org_and_model[0]
model = org_and_model[1]
res = f"{org}_{model}_{request.precision}"
return res
def process_evaluation(task: Task, eval_request: EvalRequest, limit: Optional[int] = None) -> dict:
batch_size = eval_request.batch_size
init_gpu_info = analyze_gpu_stats(parse_nvidia_smi())
# if init_gpu_info['Mem(M)'] > 500:
# assert False, f"This machine is not empty: {init_gpu_info}"
gpu_stats_list = []
stop_event = threading.Event()
monitor_thread = threading.Thread(target=monitor_gpus, args=(stop_event, 5, gpu_stats_list))
monitor_thread.start()
try:
results = run_evaluation(
eval_request=eval_request,
task_names=[task.benchmark],
num_fewshot=task.num_fewshot,
batch_size=batch_size,
device=DEVICE,
use_cache=None,
limit=limit,
)
except RuntimeError as e:
if "No executable batch size found" in str(e):
batch_size = 1
results = run_evaluation(
eval_request=eval_request,
task_names=[task.benchmark],
num_fewshot=task.num_fewshot,
batch_size=batch_size,
device=DEVICE,
use_cache=None,
limit=limit,
)
else:
raise
# print("RESULTS", results)
stop_event.set()
monitor_thread.join()
gpu_info = analyze_gpu_stats(gpu_stats_list)
for task_name in results['results'].keys():
for key, value in gpu_info.items():
results['results'][task_name][f"{key},none"] = int(value)
print("GPU Usage:", gpu_info)
dumped = json.dumps(results, indent=2, default=lambda o: "<not serializable>")
# print(dumped)
output_path = os.path.join(
EVAL_RESULTS_PATH_BACKEND, *eval_request.model.split("/"), f"results_{datetime.now()}.json"
)
os.makedirs(os.path.dirname(output_path), exist_ok=True)
with open(output_path, "w") as f:
f.write(dumped)
my_snapshot_download(
repo_id=RESULTS_REPO, revision="main", local_dir=EVAL_RESULTS_PATH_BACKEND, repo_type="dataset", max_workers=60
)
API.upload_file(
path_or_fileobj=output_path,
path_in_repo=f"{eval_request.model}/results_{datetime.now()}.json",
repo_id=RESULTS_REPO,
repo_type="dataset",
)
return results
def process_finished_requests(thr: int, hard_task_lst: Optional[list[str]] = None) -> bool:
sanity_checks()
current_finished_status = [FINISHED_STATUS, FAILED_STATUS]
# Get all eval request that are FINISHED, if you want to run other evals, change this parameter
eval_requests: list[EvalRequest] = get_eval_requests(
job_status=current_finished_status, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND
)
# Sort the evals by priority (first submitted, first run)
eval_requests: list[EvalRequest] = sort_models_by_priority(api=API, models=eval_requests)
random.shuffle(eval_requests)
eval_results: list[EvalResult] = get_raw_eval_results(EVAL_RESULTS_PATH_BACKEND, EVAL_REQUESTS_PATH_BACKEND)
result_name_to_request = {request_to_result_name(r): r for r in eval_requests}
result_name_to_result = {r.eval_name: r for r in eval_results}
for eval_request in eval_requests:
if eval_request.likes >= thr:
result_name: str = request_to_result_name(eval_request)
# Check the corresponding result
eval_result: Optional[EvalResult] = (
result_name_to_result[result_name] if result_name in result_name_to_result else None
)
# breakpoint()
task_lst = TASKS_HARNESS.copy()
random.shuffle(task_lst)
# Iterate over tasks and, if we do not have results for a task, run the relevant evaluations
for task in task_lst:
task_name = task.benchmark
do_run_task = False
if hard_task_lst is None or any(ss in task_name for ss in hard_task_lst):
do_run_task = True
if (eval_result is None or task_name not in eval_result.results) and do_run_task:
eval_request: EvalRequest = result_name_to_request[result_name]
my_snapshot_download(
repo_id=QUEUE_REPO,
revision="main",
local_dir=EVAL_REQUESTS_PATH_BACKEND,
repo_type="dataset",
max_workers=60,
)
my_set_eval_request(
api=API,
eval_request=eval_request,
set_to_status=RUNNING_STATUS,
hf_repo=QUEUE_REPO,
local_dir=EVAL_REQUESTS_PATH_BACKEND,
)
results = process_evaluation(task, eval_request)
my_snapshot_download(
repo_id=QUEUE_REPO,
revision="main",
local_dir=EVAL_REQUESTS_PATH_BACKEND,
repo_type="dataset",
max_workers=60,
)
my_set_eval_request(
api=API,
eval_request=eval_request,
set_to_status=FINISHED_STATUS,
hf_repo=QUEUE_REPO,
local_dir=EVAL_REQUESTS_PATH_BACKEND,
)
return True
return False
def maybe_refresh_results(thr: int, hard_task_lst: Optional[list[str]] = None) -> bool:
sanity_checks()
current_finished_status = [PENDING_STATUS, FINISHED_STATUS, FAILED_STATUS]
# Get all eval request that are FINISHED, if you want to run other evals, change this parameter
eval_requests: list[EvalRequest] = get_eval_requests(
job_status=current_finished_status, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND
)
# Sort the evals by priority (first submitted, first run)
eval_requests: list[EvalRequest] = sort_models_by_priority(api=API, models=eval_requests)
random.shuffle(eval_requests)
eval_results: list[EvalResult] = get_raw_eval_results(EVAL_RESULTS_PATH_BACKEND, EVAL_REQUESTS_PATH_BACKEND)
result_name_to_request = {request_to_result_name(r): r for r in eval_requests}
result_name_to_result = {r.eval_name: r for r in eval_results}
for eval_request in eval_requests:
if eval_request.likes >= thr:
result_name: str = request_to_result_name(eval_request)
# Check the corresponding result
eval_result: Optional[EvalResult] = (
result_name_to_result[result_name] if result_name in result_name_to_result else None
)
task_lst = TASKS_HARNESS.copy()
random.shuffle(task_lst)
# Iterate over tasks and, if we do not have results for a task, run the relevant evaluations
for task in task_lst:
task_name = task.benchmark
do_run_task = False
if hard_task_lst is None or any(ss in task_name for ss in hard_task_lst):
do_run_task = True
task_lst = ["nq", "trivia", "tqa", "self"]
if (
eval_result is None
or do_run_task
or task_name not in eval_result.results
or any(ss in task_name for ss in task_lst)
):
eval_request: EvalRequest = result_name_to_request[result_name]
my_snapshot_download(
repo_id=QUEUE_REPO,
revision="main",
local_dir=EVAL_REQUESTS_PATH_BACKEND,
repo_type="dataset",
max_workers=60,
)
my_set_eval_request(
api=API,
eval_request=eval_request,
set_to_status=RUNNING_STATUS,
hf_repo=QUEUE_REPO,
local_dir=EVAL_REQUESTS_PATH_BACKEND,
)
results = process_evaluation(task, eval_request)
my_snapshot_download(
repo_id=QUEUE_REPO,
revision="main",
local_dir=EVAL_REQUESTS_PATH_BACKEND,
repo_type="dataset",
max_workers=60,
)
my_set_eval_request(
api=API,
eval_request=eval_request,
set_to_status=FINISHED_STATUS,
hf_repo=QUEUE_REPO,
local_dir=EVAL_REQUESTS_PATH_BACKEND,
)
return True
return False
def process_pending_requests() -> bool:
sanity_checks()
current_pending_status = [PENDING_STATUS]
# Get all eval request that are PENDING, if you want to run other evals, change this parameter
eval_requests = get_eval_requests(
job_status=current_pending_status, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND
)
# Sort the evals by priority (first submitted, first run)
eval_requests = sort_models_by_priority(api=API, models=eval_requests)
random.shuffle(eval_requests)
print(f"Found {len(eval_requests)} {','.join(current_pending_status)} eval requests")
if len(eval_requests) == 0:
return False
eval_request = eval_requests[0]
pp.pprint(eval_request)
my_snapshot_download(
repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60
)
my_set_eval_request(
api=API,
eval_request=eval_request,
set_to_status=RUNNING_STATUS,
hf_repo=QUEUE_REPO,
local_dir=EVAL_REQUESTS_PATH_BACKEND,
)
task_lst = TASKS_HARNESS.copy()
random.shuffle(task_lst)
for task in task_lst:
results = process_evaluation(task, eval_request)
my_snapshot_download(
repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60
)
my_set_eval_request(
api=API,
eval_request=eval_request,
set_to_status=FINISHED_STATUS,
hf_repo=QUEUE_REPO,
local_dir=EVAL_REQUESTS_PATH_BACKEND,
)
return True
def get_args():
parser = argparse.ArgumentParser(description="Run the backend")
parser.add_argument("--debug", action="store_true", help="Run in debug mode")
# debug parameters
parser.add_argument("--task", type=str, default="selfcheckgpt", help="Task to debug")
parser.add_argument("--model", type=str, default="facebook/opt-1.3b", help="Model to debug")
parser.add_argument("--precision", type=str, default="float16", help="Precision to debug")
parser.add_argument("--inference-framework", type=str, default="hf-chat", help="Inference framework to debug")
parser.add_argument("--limit", type=int, default=None, help="Limit for the number of samples")
return parser.parse_args()
if __name__ == "__main__":
args = get_args()
local_debug = args.debug
# debug specific task by ping
if local_debug:
# debug_model_names = [args.model] # Use model from arguments
# debug_task_name = [args.task] # Use task from arguments
debug_model_names = ["mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mixtral-8x7B-v0.1"] # Use model from arguments
debug_task_name = ['mmlu', 'selfcheckgpt'] # Use task from arguments
precisions = ['float16', 'float16', '8bit']
task_lst = TASKS_HARNESS.copy()
for precision in precisions:
for task in task_lst:
for debug_model_name in debug_model_names:
task_name = task.benchmark
if task_name not in debug_task_name:
continue
eval_request = EvalRequest(
model=debug_model_name,
private=False,
status="",
json_filepath="",
precision=args.precision, # Use precision from arguments
inference_framework=args.inference_framework # Use inference framework from arguments
)
results = process_evaluation(task, eval_request, limit=args.limit)
else:
while True:
res = False
# if random.randint(0, 10) == 0:
res = process_pending_requests()
print(f"waiting for 60 seconds")
time.sleep(60)
# if res is False:
# if random.randint(0, 5) == 0:
# res = maybe_refresh_results(100)
# else:
# res = process_finished_requests(100)
# time.sleep(60)
# if res is False:
# if random.randint(0, 5) == 0:
# res = maybe_refresh_results(0)
# else:
# res = process_finished_requests(0)
|