import glob import json from dataclasses import dataclass from typing import Optional from huggingface_hub import HfApi, snapshot_download from src.utils import my_snapshot_download @dataclass class EvalRequest: model: str private: bool status: str json_filepath: str weight_type: str = "Original" model_type: str = "" # pretrained, finetuned, with RL inference_framework: str = "hf-chat" precision: str = "" # float16, bfloat16 base_model: Optional[str] = None # for adapter models revision: str = "main" # commit submitted_time: Optional[str] = ( "2022-05-18T11:40:22.519222" # random date just so that we can still order requests by date ) model_type: Optional[str] = None likes: Optional[int] = 0 params: Optional[int] = None license: Optional[str] = "" batch_size: Optional[int] = 1 def get_model_args(self) -> str: model_args = f"pretrained={self.model},revision={self.revision},parallelize=True" # ,max_length=4096" model_args += ",trust_remote_code=True" if self.precision in ["float16", "float32", "bfloat16"]: model_args += f",dtype={self.precision}" # Quantized models need some added config, the install of bits and bytes, etc # elif self.precision == "8bit": # model_args += ",load_in_8bit=True" # elif self.precision == "4bit": # model_args += ",load_in_4bit=True" # elif self.precision == "GPTQ": # A GPTQ model does not need dtype to be specified, # it will be inferred from the config pass elif self.precision == "8bit": model_args += ",load_in_8bit=True" else: raise Exception(f"Unknown precision {self.precision}.") return model_args def set_eval_request(api: HfApi, eval_request: EvalRequest, set_to_status: str, hf_repo: str, local_dir: str): """Updates a given eval request with its new status on the hub (running, completed, failed, ...)""" json_filepath = eval_request.json_filepath with open(json_filepath) as fp: data = json.load(fp) data["status"] = set_to_status with open(json_filepath, "w") as f: f.write(json.dumps(data)) api.upload_file( path_or_fileobj=json_filepath, path_in_repo=json_filepath.replace(local_dir, ""), repo_id=hf_repo, repo_type="dataset", ) def get_eval_requests(job_status: list, local_dir: str, hf_repo: str, do_download: bool = True) -> list[EvalRequest]: """Get all pending evaluation requests and return a list in which private models appearing first, followed by public models sorted by the number of likes. Returns: `list[EvalRequest]`: a list of model info dicts. """ if do_download: my_snapshot_download( repo_id=hf_repo, revision="main", local_dir=local_dir, repo_type="dataset", max_workers=60 ) json_files = glob.glob(f"{local_dir}/**/*.json", recursive=True) eval_requests = [] for json_filepath in json_files: with open(json_filepath) as fp: data = json.load(fp) if data["status"] in job_status: # import pdb # breakpoint() data["json_filepath"] = json_filepath if "job_id" in data: del data["job_id"] eval_request = EvalRequest(**data) eval_requests.append(eval_request) return eval_requests def check_completed_evals( api: HfApi, hf_repo: str, local_dir: str, checked_status: str, completed_status: str, failed_status: str, hf_repo_results: str, local_dir_results: str, ): """Checks if the currently running evals are completed, if yes, update their status on the hub.""" my_snapshot_download( repo_id=hf_repo_results, revision="main", local_dir=local_dir_results, repo_type="dataset", max_workers=60 ) running_evals = get_eval_requests([checked_status], hf_repo=hf_repo, local_dir=local_dir) for eval_request in running_evals: model = eval_request.model print("====================================") print(f"Checking {model}") output_path = model output_file = f"{local_dir_results}/{output_path}/results*.json" output_file_exists = len(glob.glob(output_file)) > 0 if output_file_exists: print(f"EXISTS output file exists for {model} setting it to {completed_status}") set_eval_request(api, eval_request, completed_status, hf_repo, local_dir)