File size: 15,392 Bytes
1ffc326
9346f1c
 
4596a70
2a5f9fb
 
1ffc326
8c49cb6
 
 
 
 
 
 
976f398
df66f6e
 
 
 
 
 
 
 
 
 
9d22eee
1d87935
 
df66f6e
55cc480
df66f6e
 
8c49cb6
2a73469
1ffc326
 
10f9b3c
50df158
d084b26
1ffc326
 
 
d084b26
 
 
4879b93
d084b26
 
 
 
 
 
4879b93
d084b26
 
 
26286b2
a885f09
3dfaf22
adb0416
2a73469
ffefe11
 
 
 
adb0416
614ee1f
1f60a20
8c49cb6
72a0f0f
 
 
 
 
 
59f4209
72a0f0f
 
 
6453cce
59f4209
6453cce
ef5b51c
6453cce
512b095
6453cce
09af846
 
c20dc0b
09af846
a2790cb
72a0f0f
512b095
 
aa7c3f4
adb0416
8c49cb6
 
 
 
 
 
 
 
 
ecef2dc
7644705
72a0f0f
efeee6d
ef5b51c
 
 
 
 
 
 
 
 
 
 
adb0416
8a3bdad
adb0416
ef5b51c
 
 
adb0416
8c49cb6
59f4209
8c49cb6
 
 
a2790cb
8c49cb6
2a5f9fb
8c49cb6
3ae1b8c
ab6f548
 
59f4209
 
 
3ae1b8c
dc0413f
3ae1b8c
dc0413f
 
d2179b0
8c49cb6
d2179b0
7644705
01233b7
 
58733e4
6e8f400
10f9b3c
8cb7546
613696b
ecef2dc
8c49cb6
e3a8804
 
72a0f0f
e3a8804
 
 
59e91d5
fc1e99b
 
 
 
 
 
45d02c6
fc1e99b
 
 
9d22eee
 
fc1e99b
 
45d02c6
fc1e99b
 
 
 
 
 
 
45d02c6
fc1e99b
1d87935
 
 
 
 
 
 
59e91d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c49cb6
d885a59
2a5f9fb
8c49cb6
 
d885a59
 
c20dc0b
d885a59
 
 
2a5f9fb
6e8f400
 
ecef2dc
 
6c132d2
6e8f400
460d762
6e8f400
 
2a5f9fb
6e8f400
 
 
 
 
a2790cb
8c49cb6
 
a2790cb
 
e3a8804
a2790cb
6cd6b86
a2790cb
8c49cb6
 
 
 
6cd6b86
ab6f548
 
 
 
 
 
 
 
6cd6b86
ab6f548
 
 
 
 
 
f2bc0a5
613696b
6e8f400
0227006
3c5ea13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cb7546
d16cee2
 
 
 
 
67109fc
d16cee2
adb0416
 
d16cee2
10f9b3c
a2790cb
1ffc326
10f9b3c
daf60ae
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
import subprocess
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    EVAL_COLS,
    EVAL_TYPES,
    NUMERIC_INTERVALS,
    TYPES,
    AutoEvalColumn,
    ModelType,
    fields,
    WeightType,
    Precision,
    NShotType,
)
from src.envs import API, DEVICE, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval


subprocess.run(["python", "scripts/fix_harness_import.py"])

def restart_space():
    API.restart_space(repo_id=REPO_ID)

def launch_backend():
    _ = subprocess.run(["python", "main_backend.py"])

try:
    print(EVAL_REQUESTS_PATH)
    snapshot_download(
        repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()
try:
    print(EVAL_RESULTS_PATH)
    snapshot_download(
        repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()


raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
leaderboard_df = original_df.copy()

(
    finished_eval_queue_df,
    running_eval_queue_df,
    pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)


# Searching and filtering
def update_table(
    hidden_df: pd.DataFrame,
    columns: list,
    type_query: list,
    precision_query: str,
    size_query: list,
    nshot_query: list,
    show_deleted: bool,
    query: str,
):
    print('1', len(hidden_df))
    filtered_df = filter_models(hidden_df, type_query, size_query, nshot_query, precision_query, show_deleted)
    print('2', len(filtered_df))
    filtered_df = filter_queries(query, filtered_df)
    print('3', len(filtered_df))
    df = select_columns(filtered_df, columns)
    print('4', len(df))

    leaderboard_df_styled = df.style.background_gradient(cmap="viridis")
    # leaderboard_df_styled = leaderboard_df_styled.format("{:.2f}")
    return leaderboard_df_styled


def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
    return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]


def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
    always_here_cols = [
        AutoEvalColumn.model_type_symbol.name,
        AutoEvalColumn.model.name,
    ]
    # We use COLS to maintain sorting
    filtered_df = df[
        always_here_cols + [c for c in COLS if c in df.columns and c in columns] + [AutoEvalColumn.dummy.name]
    ]
    return filtered_df


def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
    final_df = []
    if query != "":
        queries = [q.strip() for q in query.split(";")]
        for _q in queries:
            _q = _q.strip()
            if _q != "":
                temp_filtered_df = search_table(filtered_df, _q)
                if len(temp_filtered_df) > 0:
                    final_df.append(temp_filtered_df)
        if len(final_df) > 0:
            filtered_df = pd.concat(final_df)
            filtered_df = filtered_df.drop_duplicates(
                subset=[AutoEvalColumn.model.name, AutoEvalColumn.n_shot.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
            )

    return filtered_df


def filter_models(
    df: pd.DataFrame, type_query: list, size_query: list, nshot_query: list, precision_query: list, show_deleted: bool
) -> pd.DataFrame:
    # Show all models
    if show_deleted:
        filtered_df = df
    else:  # Show only still on the hub models
        filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]

    type_emoji = [t[0] for t in type_query]
    filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
    filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
    print(df[AutoEvalColumn.n_shot.name])
    print(nshot_query)
    filtered_df = filtered_df.loc[df[AutoEvalColumn.n_shot.name].isin(nshot_query + ["None"])]

    numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
    params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
    mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
    filtered_df = filtered_df.loc[mask]

    return filtered_df


demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        search_bar = gr.Textbox(
                            placeholder=" πŸ” Search for your model (separate multiple queries with `;`) and press ENTER...",
                            show_label=False,
                            elem_id="search-bar",
                        )
                    # with gr.Box(elem_id="box-filter"):
                    filter_columns_type = gr.CheckboxGroup(
                        label="Model types",
                        choices=[t.to_str() for t in ModelType],
                        value=[t.to_str() for t in ModelType],
                        interactive=True,
                        elem_id="filter-columns-type",
                        visible=False,
                    )
                    filter_columns_precision = gr.CheckboxGroup(
                        label="Precision",
                        choices=[i.value.name for i in Precision],
                        value=[i.value.name for i in Precision],
                        interactive=True,
                        elem_id="filter-columns-precision",
                        visible=False,
                    )
                    filter_columns_size = gr.CheckboxGroup(
                        label="Model sizes (in billions of parameters)",
                        choices=list(NUMERIC_INTERVALS.keys()),
                        value=list(NUMERIC_INTERVALS.keys()),
                        interactive=True,
                        elem_id="filter-columns-size",
                        visible=False,
                    )
                    filter_columns_nshot = gr.CheckboxGroup(
                        label="N-shot",
                        choices=[i.value.name for i in NShotType],
                        value=[i.value.name for i in NShotType],
                        interactive=True,
                        elem_id="filter-columns-nshot",
                    )
                    with gr.Row():
                        deleted_models_visibility = gr.Checkbox(
                            value=True, label="Show gated/private/deleted models", interactive=True
                        )
                with gr.Column(min_width=320):
                    with gr.Row():
                        shown_columns = gr.CheckboxGroup(
                            choices=[
                                c.name
                                for c in fields(AutoEvalColumn)
                                if not c.hidden and not c.never_hidden and not c.dummy
                            ],
                            value=[
                                c.name
                                for c in fields(AutoEvalColumn)
                                if c.displayed_by_default and not c.hidden and not c.never_hidden
                            ],
                            label="Select columns to show",
                            elem_id="column-select",
                            interactive=True,
                        )


            leaderboard_table_value=leaderboard_df[
                    [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
                    + shown_columns.value
                    + [AutoEvalColumn.dummy.name]
                ]
            leaderboard_df_styled = leaderboard_table_value.style.background_gradient(cmap="viridis")
            # leaderboard_df_styled = leaderboard_df_styled.format("{:.2f}")

            leaderboard_table = gr.components.Dataframe(
                value=leaderboard_df_styled,
                headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
                datatype=TYPES,
                elem_id="leaderboard-table",
                interactive=False,
                visible=True,
                # column_widths=["2%", "33%"]
            )

            # Dummy leaderboard for handling the case when the user uses backspace key
            hidden_leaderboard_table_for_search = gr.components.Dataframe(
                value=original_df[COLS],
                headers=COLS,
                datatype=TYPES,
                visible=False,
            )
            search_bar.submit(
                update_table,
                [
                    hidden_leaderboard_table_for_search,
                    shown_columns,
                    filter_columns_type,
                    filter_columns_precision,
                    filter_columns_size,
                    filter_columns_nshot,
                    deleted_models_visibility,
                    search_bar,
                ],
                leaderboard_table,
            )
            for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, filter_columns_nshot, deleted_models_visibility]:
                selector.change(
                    update_table,
                    [
                        hidden_leaderboard_table_for_search,
                        shown_columns,
                        filter_columns_type,
                        filter_columns_precision,
                        filter_columns_size,
                        filter_columns_nshot,
                        deleted_models_visibility,
                        search_bar,
                    ],
                    leaderboard_table,
                    queue=True,
                )

        with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=2):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

        # with gr.TabItem("πŸš€ Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
        #     with gr.Column():
        #         with gr.Row():
        #             gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
        #
        #         with gr.Column():
        #             with gr.Accordion(
        #                 f"βœ… Finished Evaluations ({len(finished_eval_queue_df)})",
        #                 open=False,
        #             ):
        #                 with gr.Row():
        #                     finished_eval_table = gr.components.Dataframe(
        #                         value=finished_eval_queue_df,
        #                         headers=EVAL_COLS,
        #                         datatype=EVAL_TYPES,
        #                         row_count=5,
        #                     )
        #             with gr.Accordion(
        #                 f"πŸ”„ Running Evaluation Queue ({len(running_eval_queue_df)})",
        #                 open=False,
        #             ):
        #                 with gr.Row():
        #                     running_eval_table = gr.components.Dataframe(
        #                         value=running_eval_queue_df,
        #                         headers=EVAL_COLS,
        #                         datatype=EVAL_TYPES,
        #                         row_count=5,
        #                     )
        #
        #             with gr.Accordion(
        #                 f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
        #                 open=False,
        #             ):
        #                 with gr.Row():
        #                     pending_eval_table = gr.components.Dataframe(
        #                         value=pending_eval_queue_df,
        #                         headers=EVAL_COLS,
        #                         datatype=EVAL_TYPES,
        #                         row_count=5,
        #                     )
        #     with gr.Row():
        #         gr.Markdown("# βœ‰οΈβœ¨ Submit your model here!", elem_classes="markdown-text")
        #
        #     with gr.Row():
        #         with gr.Column():
        #             model_name_textbox = gr.Textbox(label="Model name")
        #             revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
        #             model_type = gr.Dropdown(
        #                 choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
        #                 label="Model type",
        #                 multiselect=False,
        #                 value=None,
        #                 interactive=True,
        #             )
        #
        #         with gr.Column():
        #             precision = gr.Dropdown(
        #                 choices=[i.value.name for i in Precision if i != Precision.Unknown],
        #                 label="Precision",
        #                 multiselect=False,
        #                 value="float16" if DEVICE != "cpu" else "float32",
        #                 interactive=True,
        #             )
        #             weight_type = gr.Dropdown(
        #                 choices=[i.value.name for i in WeightType],
        #                 label="Weights type",
        #                 multiselect=False,
        #                 value="Original",
        #                 interactive=True,
        #             )
        #             base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
        #
        #     submit_button = gr.Button("Submit Eval")
        #     submission_result = gr.Markdown()
        #     submit_button.click(
        #         add_new_eval,
        #         [
        #             model_name_textbox,
        #             base_model_name_textbox,
        #             revision_name_textbox,
        #             precision,
        #             weight_type,
        #             model_type,
        #         ],
        #         submission_result,
        #     )

    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.add_job(launch_backend, "interval", seconds=100) # will only allow one job to be run at the same time
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()