Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 6,744 Bytes
efeee6d 314f91a 95f85ed efeee6d 314f91a b899767 efeee6d 943f952 bddf3cd f4bd2ee 1ffc326 b899767 efeee6d 2699972 58733e4 efeee6d 8c49cb6 705e23f f4bd2ee 705e23f 0227006 efeee6d 0227006 3c5ea13 705e23f 149e41e d313dbd 3c5ea13 d16cee2 d313dbd 8c49cb6 d313dbd 8c49cb6 b323764 d313dbd b323764 d313dbd 8c49cb6 d16cee2 58733e4 2a73469 217b585 9833cdb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
from dataclasses import dataclass
from enum import Enum
@dataclass
class Task:
benchmark: str
metric: str
col_name: str
# Select your tasks here
# ---------------------------------------------------
class Tasks(Enum):
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
task2 = Task("belebele_pol_Latn", "acc,none", "belebele_pol_Latn")
task3 = Task("polemo2_in", "exact_match,score-first", "polemo2-in_g")
task4 = Task("polemo2_in_multiple_choice", "acc,none", "polemo2_in_mc")
task5 = Task("polemo2_out", "exact_match,score-first", "polemo2_out_g")
task6 = Task("polemo2_out_multiple_choice", "acc,none", "polemo2_out_mc")
task7 = Task("polish_8tags_multiple_choice", "acc,none", "8tags_mc")
task8 = Task("polish_8tags_regex", "exact_match,score-first", "8tags_g")
task9 = Task("polish_belebele_regex", "exact_match,score-first", "belebele_g")
task10 = Task("polish_dyk_multiple_choice", "acc,none", "dyk_mc")
task11 = Task("polish_dyk_regex", "exact_match,score-first", "dyk_g")
task12 = Task("polish_ppc_multiple_choice", "acc,none", "ppc_mc")
task13 = Task("polish_ppc_regex", "exact_match,score-first", "ppc_g")
task14 = Task("polish_psc_multiple_choice", "acc,none", "psc_mc")
task15 = Task("polish_psc_regex", "exact_match,score-first", "psc_g")
task16 = Task("polish_cbd_multiple_choice", "acc,none", "cbd_mc")
task17 = Task("polish_cbd_regex", "exact_match,score-first", "cbd_g")
task18 = Task("polish_klej_ner_multiple_choice", "acc,none", "klej_ner_mc")
task19 = Task("polish_klej_ner_regex", "exact_match,score-first", "klej_ner_g")
NUM_FEWSHOT = 0 # Change with your few shot
# ---------------------------------------------------
# Your leaderboard name
TITLE = """
<div style="display: flex; flex-wrap: wrap; justify-content: space-around;">
<img src="https://speakleash.org/wp-content/uploads/2023/09/SpeakLeash_logo.svg">
<div>
<h1 align="center" id="space-title">Open PL LLM Leaderboard (0-shot and 5-shot)</h1>
<h2 align="center" id="space-subtitle">Leaderboard was created as part of an open-science project SpeakLeash.org</h2>
</div>
</div>
"""
# What does your leaderboard evaluate?
INTRODUCTION_TEXT = """
The leaderboard evaluates language models on a set of Polish tasks. The tasks are designed to test the models' ability to understand and generate Polish text. The leaderboard is designed to be a benchmark for the Polish language model community, and to help researchers and practitioners understand the capabilities of different models.
Almost every task has two versions: regex and multiple choice. The regex version is scored based on exact match, while the multiple choice version is scored based on accuracy.
* _g suffix means that a model needs to generate an answer (only suitable for instructions-based models)
* _mc suffix means that a model is scored against every possible class (suitable also for base models)
"""
# Which evaluations are you running? how can people reproduce what you have?
LLM_BENCHMARKS_TEXT = f"""
## Do you want to add your model to the leaderboard?
Contact with me: [LinkedIn](https://www.linkedin.com/in/wrobelkrzysztof/)
or join our [Discord SpeakLeash](https://discord.gg/3G9DVM39)
## TODO
* change metrics for DYK, PSC, CBD(?)
* fix names of our models
* add inference time
* add metadata for models (e.g. #Params)
* add more tasks
* add baselines
## Evaluation metrics
- **belebele_pol_Latn**: accuracy
- **polemo2_in**: accuracy
- **polemo2_in_multiple_choice**: accuracy
- **polemo2_out**: accuracy
- **polemo2_out_multiple_choice**: accuracy
- **polish_8tags_multiple_choice**: accuracy
- **polish_8tags_regex**: accuracy
- **polish_belebele_regex**: accuracy
- **polish_dyk_multiple_choice**: accuracy - should be F1
- **polish_dyk_regex**: accuracy - should be F1
- **polish_ppc_multiple_choice**: accuracy
- **polish_ppc_regex**: accuracy
- **polish_psc_multiple_choice**: accuracy - should be F1
- **polish_psc_regex**: accuracy - should be F1
- **polish_cbd_multiple_choice**: accuracy - should be F1?
- **polish_cbd_regex**: accuracy - should be F1?
- **polish_klej_ner_multiple_choice**: accuracy
- **polish_klej_ner_regex**: accuracy
## How it works
## Reproducibility
To reproduce our results, you need to clone the repository:
```
git clone https://github.com/speakleash/lm-evaluation-harness.git
cd lm-evaluation-harness
pip install -e .
```
and run benchmark for 0-shot and 5-shot:
```
lm_eval --model hf --model_args pretrained=Azurro/APT3-1B-Base --tasks polish --num_fewshot 0 --device cuda:0 --batch_size 16 --verbosity DEBUG --output_path results/ --log_samples
lm_eval --model hf --model_args pretrained=Azurro/APT3-1B-Base --tasks polish --num_fewshot 5 --device cuda:0 --batch_size 16 --verbosity DEBUG --output_path results/ --log_samples
```
"""
EVALUATION_QUEUE_TEXT = """
## Some good practices before submitting a model
### 1) Make sure you can load your model and tokenizer using AutoClasses:
```python
from transformers import AutoConfig, AutoModel, AutoTokenizer
config = AutoConfig.from_pretrained("your model name", revision=revision)
model = AutoModel.from_pretrained("your model name", revision=revision)
tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision)
```
If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded.
Note: make sure your model is public!
Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it, stay posted!
### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index)
It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`!
### 3) Make sure your model has an open license!
This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model 🤗
### 4) Fill up your model card
When we add extra information about models to the leaderboard, it will be automatically taken from the model card
## In case of model failure
If your model is displayed in the `FAILED` category, its execution stopped.
Make sure you have followed the above steps first.
If everything is done, check you can launch the EleutherAIHarness on your model locally, using the above command without modifications (you can add `--limit` to limit the number of examples per task).
"""
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
CITATION_BUTTON_TEXT = r"""
"""
|