Spaces:
Sleeping
Sleeping
File size: 1,452 Bytes
f2a0d4e aad8087 f2a0d4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
# make sure to install `langchain` and `langchain-mistralai` in your Python environment
import os
from langchain_mistralai import ChatMistralAI
import streamlit as st
from dotenv import load_dotenv
from langchain_core.output_parsers import StrOutputParser
# Initialize session state
if 'result' not in st.session_state:
st.session_state.result = None
# Langchain settings
load_dotenv(".env")
os.environ["LANGCHAIN_PROJECT"] = "mistral_app"
os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com"
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_API_KEY"] = os.getenv("LANGCHAIN_API_KEY")
# Initialize the LLM
@st.cache_resource
def initialize_llm():
api_key = os.getenv("API_KEY")
mistral_model = "open-codestral-mamba"
return ChatMistralAI(
model=mistral_model,
temperature=0,
api_key=api_key,
token_limit=2000,
random_seed=0
)
llm = initialize_llm()
parser = StrOutputParser()
#streamlit framework
st.title("Codestral")
input_text = st.text_input("Feel free to ask me anything")
# Only make API call when submit button is pressed
if st.button("Submit") and input_text:
with st.spinner("Thinking..."):
output = llm.invoke([("user", input_text)])
st.session_state.result = parser.invoke(output)
# Display results
if input_text:
st.write("You said: " + input_text)
if st.session_state.result:
st.write(st.session_state.result) |