import streamlit as st from transformers import pipeline from langchain_core.output_parsers import StrOutputParser # Initialize the text generation pipeline pipe = pipeline("text-generation", model="Qwen/Qwen2.5-0.5B-Instruct", device=-1) parser = StrOutputParser() # Streamlit app st.title("Text Generation with Qwen Model") # Text input from the user user_input = st.text_input("Enter your message:", "Who are you?") # Generate text when the button is clicked if st.button("Generate"): messages = [{"role": "user", "content": user_input}] output = pipe(messages, max_new_tokens=50) # Adjust max_new_tokens as needed generated_text = output[0]['generated_text'] result = parser.invoke(generated_text) # Display the generated text st.write("Generated Response:") st.write(result)