spock74's picture
Duplicate from vumichien/whisper-speaker-diarization
5a669ff
import whisper
import datetime
import subprocess
import gradio as gr
from pathlib import Path
import pandas as pd
import re
import time
import os
import numpy as np
from sklearn.cluster import AgglomerativeClustering
from pytube import YouTube
import torch
import pyannote.audio
from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding
from pyannote.audio import Audio
from pyannote.core import Segment
from gpuinfo import GPUInfo
import wave
import contextlib
from transformers import pipeline
import psutil
whisper_models = ["base", "small", "medium", "large"]
source_languages = {
"en": "English",
"zh": "Chinese",
"de": "German",
"es": "Spanish",
"ru": "Russian",
"ko": "Korean",
"fr": "French",
"ja": "Japanese",
"pt": "Portuguese",
"tr": "Turkish",
"pl": "Polish",
"ca": "Catalan",
"nl": "Dutch",
"ar": "Arabic",
"sv": "Swedish",
"it": "Italian",
"id": "Indonesian",
"hi": "Hindi",
"fi": "Finnish",
"vi": "Vietnamese",
"he": "Hebrew",
"uk": "Ukrainian",
"el": "Greek",
"ms": "Malay",
"cs": "Czech",
"ro": "Romanian",
"da": "Danish",
"hu": "Hungarian",
"ta": "Tamil",
"no": "Norwegian",
"th": "Thai",
"ur": "Urdu",
"hr": "Croatian",
"bg": "Bulgarian",
"lt": "Lithuanian",
"la": "Latin",
"mi": "Maori",
"ml": "Malayalam",
"cy": "Welsh",
"sk": "Slovak",
"te": "Telugu",
"fa": "Persian",
"lv": "Latvian",
"bn": "Bengali",
"sr": "Serbian",
"az": "Azerbaijani",
"sl": "Slovenian",
"kn": "Kannada",
"et": "Estonian",
"mk": "Macedonian",
"br": "Breton",
"eu": "Basque",
"is": "Icelandic",
"hy": "Armenian",
"ne": "Nepali",
"mn": "Mongolian",
"bs": "Bosnian",
"kk": "Kazakh",
"sq": "Albanian",
"sw": "Swahili",
"gl": "Galician",
"mr": "Marathi",
"pa": "Punjabi",
"si": "Sinhala",
"km": "Khmer",
"sn": "Shona",
"yo": "Yoruba",
"so": "Somali",
"af": "Afrikaans",
"oc": "Occitan",
"ka": "Georgian",
"be": "Belarusian",
"tg": "Tajik",
"sd": "Sindhi",
"gu": "Gujarati",
"am": "Amharic",
"yi": "Yiddish",
"lo": "Lao",
"uz": "Uzbek",
"fo": "Faroese",
"ht": "Haitian creole",
"ps": "Pashto",
"tk": "Turkmen",
"nn": "Nynorsk",
"mt": "Maltese",
"sa": "Sanskrit",
"lb": "Luxembourgish",
"my": "Myanmar",
"bo": "Tibetan",
"tl": "Tagalog",
"mg": "Malagasy",
"as": "Assamese",
"tt": "Tatar",
"haw": "Hawaiian",
"ln": "Lingala",
"ha": "Hausa",
"ba": "Bashkir",
"jw": "Javanese",
"su": "Sundanese",
}
source_language_list = [key[0] for key in source_languages.items()]
MODEL_NAME = "vumichien/whisper-medium-jp"
lang = "ja"
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device=device,
)
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe")
embedding_model = PretrainedSpeakerEmbedding(
"speechbrain/spkrec-ecapa-voxceleb",
device=torch.device("cuda" if torch.cuda.is_available() else "cpu"))
def transcribe(microphone, file_upload):
warn_output = ""
if (microphone is not None) and (file_upload is not None):
warn_output = (
"WARNING: You've uploaded an audio file and used the microphone. "
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
)
elif (microphone is None) and (file_upload is None):
return "ERROR: You have to either use the microphone or upload an audio file"
file = microphone if microphone is not None else file_upload
text = pipe(file)["text"]
return warn_output + text
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
" </center>"
)
return HTML_str
def yt_transcribe(yt_url):
yt = YouTube(yt_url)
html_embed_str = _return_yt_html_embed(yt_url)
stream = yt.streams.filter(only_audio=True)[0]
stream.download(filename="audio.mp3")
text = pipe("audio.mp3")["text"]
return html_embed_str, text
def convert_time(secs):
return datetime.timedelta(seconds=round(secs))
def get_youtube(video_url):
yt = YouTube(video_url)
abs_video_path = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download()
print("Success download video")
print(abs_video_path)
return abs_video_path
def speech_to_text(video_file_path, selected_source_lang, whisper_model, num_speakers):
"""
# Transcribe youtube link using OpenAI Whisper
1. Using Open AI's Whisper model to seperate audio into segments and generate transcripts.
2. Generating speaker embeddings for each segments.
3. Applying agglomerative clustering on the embeddings to identify the speaker for each segment.
Speech Recognition is based on models from OpenAI Whisper https://github.com/openai/whisper
Speaker diarization model and pipeline from by https://github.com/pyannote/pyannote-audio
"""
model = whisper.load_model(whisper_model)
time_start = time.time()
if(video_file_path == None):
raise ValueError("Error no video input")
print(video_file_path)
try:
# Read and convert youtube video
_,file_ending = os.path.splitext(f'{video_file_path}')
print(f'file enging is {file_ending}')
audio_file = video_file_path.replace(file_ending, ".wav")
print("starting conversion to wav")
os.system(f'ffmpeg -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{audio_file}"')
# Get duration
with contextlib.closing(wave.open(audio_file,'r')) as f:
frames = f.getnframes()
rate = f.getframerate()
duration = frames / float(rate)
print(f"conversion to wav ready, duration of audio file: {duration}")
# Transcribe audio
options = dict(language=selected_source_lang, beam_size=5, best_of=5)
transcribe_options = dict(task="transcribe", **options)
result = model.transcribe(audio_file, **transcribe_options)
segments = result["segments"]
print("starting whisper done with whisper")
except Exception as e:
raise RuntimeError("Error converting video to audio")
try:
# Create embedding
def segment_embedding(segment):
audio = Audio()
start = segment["start"]
# Whisper overshoots the end timestamp in the last segment
end = min(duration, segment["end"])
clip = Segment(start, end)
waveform, sample_rate = audio.crop(audio_file, clip)
return embedding_model(waveform[None])
embeddings = np.zeros(shape=(len(segments), 192))
for i, segment in enumerate(segments):
embeddings[i] = segment_embedding(segment)
embeddings = np.nan_to_num(embeddings)
print(f'Embedding shape: {embeddings.shape}')
# Assign speaker label
clustering = AgglomerativeClustering(num_speakers).fit(embeddings)
labels = clustering.labels_
for i in range(len(segments)):
segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1)
# Make output
objects = {
'Start' : [],
'End': [],
'Speaker': [],
'Text': []
}
text = ''
for (i, segment) in enumerate(segments):
if i == 0 or segments[i - 1]["speaker"] != segment["speaker"]:
objects['Start'].append(str(convert_time(segment["start"])))
objects['Speaker'].append(segment["speaker"])
if i != 0:
objects['End'].append(str(convert_time(segments[i - 1]["end"])))
objects['Text'].append(text)
text = ''
text += segment["text"] + ' '
objects['End'].append(str(convert_time(segments[i - 1]["end"])))
objects['Text'].append(text)
time_end = time.time()
time_diff = time_end - time_start
memory = psutil.virtual_memory()
gpu_utilization, gpu_memory = GPUInfo.gpu_usage()
gpu_utilization = gpu_utilization[0] if len(gpu_utilization) > 0 else 0
gpu_memory = gpu_memory[0] if len(gpu_memory) > 0 else 0
system_info = f"""
*Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB.*
*Processing time: {time_diff:.5} seconds.*
*GPU Utilization: {gpu_utilization}%, GPU Memory: {gpu_memory}MiB.*
"""
return pd.DataFrame(objects), system_info
except Exception as e:
raise RuntimeError("Error Running inference with local model", e)
# ---- Gradio Layout -----
# Inspiration from https://huggingface.co/spaces/RASMUS/Whisper-youtube-crosslingual-subtitles
video_in = gr.Video(label="Video file", mirror_webcam=False)
youtube_url_in = gr.Textbox(label="Youtube url", lines=1, interactive=True)
df_init = pd.DataFrame(columns=['Start', 'End', 'Speaker', 'Text'])
memory = psutil.virtual_memory()
selected_source_lang = gr.Dropdown(choices=source_language_list, type="value", value="en", label="Spoken language in video", interactive=True)
selected_whisper_model = gr.Dropdown(choices=whisper_models, type="value", value="base", label="Selected Whisper model", interactive=True)
number_speakers = gr.Number(precision=0, value=2, label="Selected number of speakers", interactive=True)
system_info = gr.Markdown(f"*Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB*")
transcription_df = gr.DataFrame(value=df_init,label="Transcription dataframe", row_count=(0, "dynamic"), max_rows = 10, wrap=True, overflow_row_behaviour='paginate')
title = "Whisper speaker diarization"
demo = gr.Blocks(title=title)
demo.encrypt = False
with demo:
with gr.Tab("Whisper speaker diarization"):
gr.Markdown('''
<div>
<h1 style='text-align: center'>Whisper speaker diarization</h1>
This space uses Whisper models from <a href='https://github.com/openai/whisper' target='_blank'><b>OpenAI</b></a> to recoginze the speech and ECAPA-TDNN model from <a href='https://github.com/speechbrain/speechbrain' target='_blank'><b>SpeechBrain</b></a> to encode and clasify speakers</h2>
</div>
''')
with gr.Row():
gr.Markdown('''
### Transcribe youtube link using OpenAI Whisper
##### 1. Using Open AI's Whisper model to seperate audio into segments and generate transcripts.
##### 2. Generating speaker embeddings for each segments.
##### 3. Applying agglomerative clustering on the embeddings to identify the speaker for each segment.
''')
with gr.Row():
gr.Markdown('''
### You can test by following examples:
''')
examples = gr.Examples(examples=
[ "https://www.youtube.com/watch?v=j7BfEzAFuYc&t=32s",
"https://www.youtube.com/watch?v=-UX0X45sYe4",
"https://www.youtube.com/watch?v=7minSgqi-Gw"],
label="Examples", inputs=[youtube_url_in])
with gr.Row():
with gr.Column():
youtube_url_in.render()
download_youtube_btn = gr.Button("Download Youtube video")
download_youtube_btn.click(get_youtube, [youtube_url_in], [
video_in])
print(video_in)
with gr.Row():
with gr.Column():
video_in.render()
with gr.Column():
gr.Markdown('''
##### Here you can start the transcription process.
##### Please select the source language for transcription.
##### You should select a number of speakers for getting better results.
''')
selected_source_lang.render()
selected_whisper_model.render()
number_speakers.render()
transcribe_btn = gr.Button("Transcribe audio and diarization")
transcribe_btn.click(speech_to_text, [video_in, selected_source_lang, selected_whisper_model, number_speakers], [transcription_df, system_info])
with gr.Row():
gr.Markdown('''
##### Here you will get transcription output
##### ''')
with gr.Row():
with gr.Column():
transcription_df.render()
system_info.render()
gr.Markdown('''<center><img src='https://visitor-badge.glitch.me/badge?page_id=WhisperDiarizationSpeakers' alt='visitor badge'><a href="https://opensource.org/licenses/Apache-2.0"><img src='https://img.shields.io/badge/License-Apache_2.0-blue.svg' alt='License: Apache 2.0'></center>''')
with gr.Tab("Whisper Transcribe Japanese Audio"):
gr.Markdown(f'''
<div>
<h1 style='text-align: center'>Whisper Transcribe Japanese Audio</h1>
</div>
Transcribe long-form microphone or audio inputs with the click of a button! The fine-tuned
checkpoint <a href='https://huggingface.co/{MODEL_NAME}' target='_blank'><b>{MODEL_NAME}</b></a> to transcribe audio files of arbitrary length.
''')
microphone = gr.inputs.Audio(source="microphone", type="filepath", optional=True)
upload = gr.inputs.Audio(source="upload", type="filepath", optional=True)
transcribe_btn = gr.Button("Transcribe Audio")
text_output = gr.Textbox()
with gr.Row():
gr.Markdown('''
### You can test by following examples:
''')
examples = gr.Examples(examples=
[ "sample1.wav",
"sample2.wav",
],
label="Examples", inputs=[upload])
transcribe_btn.click(transcribe, [microphone, upload], outputs=text_output)
with gr.Tab("Whisper Transcribe Japanese YouTube"):
gr.Markdown(f'''
<div>
<h1 style='text-align: center'>Whisper Transcribe Japanese YouTube</h1>
</div>
Transcribe long-form YouTube videos with the click of a button! The fine-tuned checkpoint:
<a href='https://huggingface.co/{MODEL_NAME}' target='_blank'><b>{MODEL_NAME}</b></a> to transcribe audio files of arbitrary length.
''')
youtube_link = gr.Textbox(label="Youtube url", lines=1, interactive=True)
yt_transcribe_btn = gr.Button("Transcribe YouTube")
text_output2 = gr.Textbox()
html_output = gr.Markdown()
yt_transcribe_btn.click(yt_transcribe, [youtube_link], outputs=[html_output, text_output2])
demo.launch(debug=True)