sprinala commited on
Commit
e47be1b
·
verified ·
1 Parent(s): 63e237d

Upload 2 files

Browse files
Files changed (3) hide show
  1. .gitattributes +1 -0
  2. app.py +26 -0
  3. pokemon_model.keras +3 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ pokemon_model.keras filter=lfs diff=lfs merge=lfs -text
app.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import tensorflow as tf
3
+ from PIL import Image
4
+ import numpy as np
5
+
6
+ # Lade dein Modell (hier als Beispiel die Keras .h5 Datei)
7
+ model = tf.keras.models.load_model('pokemon_model.keras')
8
+
9
+ # Klassennamen, sollten deinem Dataset entsprechen
10
+ class_names = ['Jolteon', 'Kakuna', 'Mr. Mime']
11
+
12
+ def classify_image(image):
13
+ img = image.resize((160, 160))
14
+ img_array = tf.keras.preprocessing.image.img_to_array(img)
15
+ img_array = tf.expand_dims(img_array, 0) # Erstelle einen Batch
16
+ predictions = model.predict(img_array)
17
+ predicted_class = class_names[np.argmax(predictions[0])]
18
+ confidence = np.max(predictions[0])
19
+ return predicted_class, confidence
20
+
21
+ image_input = gr.inputs.Image(shape=(160, 160))
22
+ label = gr.outputs.Label(num_top_classes=3)
23
+
24
+ gr.Interface(fn=classify_image, inputs=image_input, outputs=label,
25
+ title='Pokémon Classifier',
26
+ description='Upload an image of Jolteon, Kakuna, Mr. Mime and the classifier will tell you which one it is and the confidence level of the prediction.').launch()
pokemon_model.keras ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:379c2b41b24bdb982191417c1b4200d6faae227afc80029357afb942ffd8ac76
3
+ size 250559651