Spaces:
Sleeping
Sleeping
spuuntries
commited on
Commit
·
c9e9eb6
1
Parent(s):
20cf889
feat: add new model
Browse files- 3q7y4e.safetensors +3 -0
- app.py +37 -6
- models.py +184 -24
3q7y4e.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1646a218094821c8c0ca6df5c7f236bceb1aec6f4085d0a42f920bec6d53bb57
|
3 |
+
size 352409020
|
app.py
CHANGED
@@ -3,6 +3,7 @@ import torch
|
|
3 |
from PIL import Image
|
4 |
import torchvision.transforms as transforms
|
5 |
import numpy as np
|
|
|
6 |
from safetensors.torch import load_model, save_model
|
7 |
from models import *
|
8 |
import os
|
@@ -33,13 +34,24 @@ class WasteClassifier:
|
|
33 |
img_tensor = self.transform(image).unsqueeze(0).to(self.device)
|
34 |
|
35 |
with torch.no_grad():
|
36 |
-
outputs = self.model(img_tensor)
|
37 |
probabilities = torch.nn.functional.softmax(outputs, dim=1)
|
38 |
|
39 |
probs = probabilities[0].cpu().numpy()
|
40 |
pred_class = self.class_names[np.argmax(probs)]
|
41 |
confidence = np.max(probs)
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
results = {
|
44 |
"predicted_class": pred_class,
|
45 |
"confidence": confidence,
|
@@ -47,6 +59,7 @@ class WasteClassifier:
|
|
47 |
class_name: float(prob)
|
48 |
for class_name, prob in zip(self.class_names, probs)
|
49 |
},
|
|
|
50 |
}
|
51 |
|
52 |
return results
|
@@ -56,6 +69,16 @@ def interface(classifier):
|
|
56 |
def process_image(image):
|
57 |
results = classifier.predict(image)
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
output_str = f"Predicted Class: {results['predicted_class']}\n"
|
60 |
output_str += f"Confidence: {results['confidence']*100:.2f}%\n\n"
|
61 |
output_str += "Class Probabilities:\n"
|
@@ -67,16 +90,23 @@ def interface(classifier):
|
|
67 |
for class_name, prob in sorted_probs:
|
68 |
output_str += f"{class_name}: {prob*100:.2f}%\n"
|
69 |
|
70 |
-
|
|
|
|
|
71 |
|
72 |
demo = gr.Interface(
|
73 |
fn=process_image,
|
74 |
inputs=[gr.Image(type="pil", label="Upload Image")],
|
75 |
-
outputs=[
|
|
|
|
|
|
|
|
|
76 |
title="Waste Classification System",
|
77 |
description="""
|
78 |
Upload an image of waste to classify it into different categories.
|
79 |
-
The model will predict the type of waste
|
|
|
80 |
""",
|
81 |
examples=(
|
82 |
[["example1.jpg"], ["example2.jpg"], ["example3.jpg"]]
|
@@ -102,11 +132,12 @@ class_names = [
|
|
102 |
"Textile Trash",
|
103 |
"Vegetation",
|
104 |
]
|
105 |
-
|
|
|
106 |
best_model = best_model.to(device)
|
107 |
load_model(
|
108 |
best_model,
|
109 |
-
os.path.join(os.path.dirname(os.path.abspath(__file__)), "
|
110 |
)
|
111 |
|
112 |
classifier = WasteClassifier(best_model, class_names, device)
|
|
|
3 |
from PIL import Image
|
4 |
import torchvision.transforms as transforms
|
5 |
import numpy as np
|
6 |
+
import torch.nn.functional as F
|
7 |
from safetensors.torch import load_model, save_model
|
8 |
from models import *
|
9 |
import os
|
|
|
34 |
img_tensor = self.transform(image).unsqueeze(0).to(self.device)
|
35 |
|
36 |
with torch.no_grad():
|
37 |
+
outputs, seg_mask = self.model(img_tensor) # Handle both outputs
|
38 |
probabilities = torch.nn.functional.softmax(outputs, dim=1)
|
39 |
|
40 |
probs = probabilities[0].cpu().numpy()
|
41 |
pred_class = self.class_names[np.argmax(probs)]
|
42 |
confidence = np.max(probs)
|
43 |
|
44 |
+
# Process segmentation mask
|
45 |
+
seg_mask = (
|
46 |
+
seg_mask[0, 0].cpu().numpy().astype(np.float32)
|
47 |
+
) # Get first image, first channel
|
48 |
+
# seg_mask = (seg_mask >= 0.2).astype(np.float32) # Threshold at 0.2
|
49 |
+
|
50 |
+
# Resize mask back to original image size
|
51 |
+
seg_mask = Image.fromarray(seg_mask)
|
52 |
+
seg_mask = seg_mask.resize(original_size, Image.NEAREST)
|
53 |
+
seg_mask = np.array(seg_mask)
|
54 |
+
|
55 |
results = {
|
56 |
"predicted_class": pred_class,
|
57 |
"confidence": confidence,
|
|
|
59 |
class_name: float(prob)
|
60 |
for class_name, prob in zip(self.class_names, probs)
|
61 |
},
|
62 |
+
"segmentation_mask": seg_mask,
|
63 |
}
|
64 |
|
65 |
return results
|
|
|
69 |
def process_image(image):
|
70 |
results = classifier.predict(image)
|
71 |
|
72 |
+
if isinstance(image, Image.Image):
|
73 |
+
image_np = np.array(image)
|
74 |
+
else:
|
75 |
+
image_np = image
|
76 |
+
|
77 |
+
mask = results["segmentation_mask"]
|
78 |
+
|
79 |
+
overlay = image_np.copy()
|
80 |
+
overlay[mask < 0.2] = overlay[mask < 0.2] * 0
|
81 |
+
|
82 |
output_str = f"Predicted Class: {results['predicted_class']}\n"
|
83 |
output_str += f"Confidence: {results['confidence']*100:.2f}%\n\n"
|
84 |
output_str += "Class Probabilities:\n"
|
|
|
90 |
for class_name, prob in sorted_probs:
|
91 |
output_str += f"{class_name}: {prob*100:.2f}%\n"
|
92 |
|
93 |
+
mask_viz = (mask * 255).astype(np.uint8)
|
94 |
+
|
95 |
+
return [output_str, overlay, mask_viz]
|
96 |
|
97 |
demo = gr.Interface(
|
98 |
fn=process_image,
|
99 |
inputs=[gr.Image(type="pil", label="Upload Image")],
|
100 |
+
outputs=[
|
101 |
+
gr.Textbox(label="Classification Results"),
|
102 |
+
gr.Image(label="Segmented Object"),
|
103 |
+
gr.Image(label="Segmentation Mask"),
|
104 |
+
],
|
105 |
title="Waste Classification System",
|
106 |
description="""
|
107 |
Upload an image of waste to classify it into different categories.
|
108 |
+
The model will predict the type of waste, show confidence scores for each category,
|
109 |
+
and display the segmented object along with its mask.
|
110 |
""",
|
111 |
examples=(
|
112 |
[["example1.jpg"], ["example2.jpg"], ["example3.jpg"]]
|
|
|
132 |
"Textile Trash",
|
133 |
"Vegetation",
|
134 |
]
|
135 |
+
|
136 |
+
best_model = ResNet101UNet(num_classes=len(class_names))
|
137 |
best_model = best_model.to(device)
|
138 |
load_model(
|
139 |
best_model,
|
140 |
+
os.path.join(os.path.dirname(os.path.abspath(__file__)), "3q7y4e.safetensors"),
|
141 |
)
|
142 |
|
143 |
classifier = WasteClassifier(best_model, class_names, device)
|
models.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
|
|
3 |
|
4 |
|
5 |
class BasicBlock(nn.Module):
|
@@ -76,19 +77,20 @@ class Bottleneck(nn.Module):
|
|
76 |
|
77 |
|
78 |
class ResNet(nn.Module):
|
79 |
-
def __init__(self, block, num_blocks, num_classes=1000
|
80 |
super(ResNet, self).__init__()
|
81 |
self.in_planes = 64
|
82 |
-
self.K = K
|
83 |
-
self.T = T
|
84 |
|
85 |
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
|
86 |
self.bn1 = nn.BatchNorm2d(64)
|
87 |
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
|
|
88 |
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
|
89 |
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
|
90 |
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
|
91 |
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
|
|
|
|
|
92 |
self.fc = nn.Linear(512 * block.expansion, num_classes)
|
93 |
|
94 |
def _make_layer(self, block, planes, num_blocks, stride):
|
@@ -99,43 +101,201 @@ class ResNet(nn.Module):
|
|
99 |
self.in_planes = planes * block.expansion
|
100 |
return nn.Sequential(*layers)
|
101 |
|
102 |
-
def t_max_avg_pooling(self, x):
|
103 |
-
B, C, H, W = x.shape
|
104 |
-
x_flat = x.view(B, C, -1)
|
105 |
-
top_k_values, _ = torch.topk(x_flat, self.K, dim=2)
|
106 |
-
max_values = top_k_values.max(dim=2)[0]
|
107 |
-
avg_values = top_k_values.mean(dim=2)
|
108 |
-
output = torch.where(max_values >= self.T, max_values, avg_values)
|
109 |
-
return output
|
110 |
-
|
111 |
def forward(self, x):
|
112 |
out = torch.relu(self.bn1(self.conv1(x)))
|
113 |
out = self.maxpool(out)
|
|
|
114 |
out = self.layer1(out)
|
115 |
out = self.layer2(out)
|
116 |
out = self.layer3(out)
|
117 |
out = self.layer4(out)
|
118 |
-
|
119 |
-
out =
|
|
|
120 |
out = self.fc(out)
|
121 |
return out
|
122 |
|
123 |
|
124 |
-
def ResNet18(num_classes=1000
|
125 |
-
return ResNet(BasicBlock, [2, 2, 2, 2], num_classes
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
|
128 |
-
def
|
129 |
-
return
|
130 |
|
131 |
|
132 |
-
def
|
133 |
-
return
|
134 |
|
135 |
|
136 |
-
def
|
137 |
-
return
|
138 |
|
139 |
|
140 |
-
def
|
141 |
-
return
|
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
|
5 |
|
6 |
class BasicBlock(nn.Module):
|
|
|
77 |
|
78 |
|
79 |
class ResNet(nn.Module):
|
80 |
+
def __init__(self, block, num_blocks, num_classes=1000):
|
81 |
super(ResNet, self).__init__()
|
82 |
self.in_planes = 64
|
|
|
|
|
83 |
|
84 |
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
|
85 |
self.bn1 = nn.BatchNorm2d(64)
|
86 |
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
87 |
+
|
88 |
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
|
89 |
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
|
90 |
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
|
91 |
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
|
92 |
+
|
93 |
+
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
94 |
self.fc = nn.Linear(512 * block.expansion, num_classes)
|
95 |
|
96 |
def _make_layer(self, block, planes, num_blocks, stride):
|
|
|
101 |
self.in_planes = planes * block.expansion
|
102 |
return nn.Sequential(*layers)
|
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
def forward(self, x):
|
105 |
out = torch.relu(self.bn1(self.conv1(x)))
|
106 |
out = self.maxpool(out)
|
107 |
+
|
108 |
out = self.layer1(out)
|
109 |
out = self.layer2(out)
|
110 |
out = self.layer3(out)
|
111 |
out = self.layer4(out)
|
112 |
+
|
113 |
+
out = self.avgpool(out)
|
114 |
+
out = torch.flatten(out, 1)
|
115 |
out = self.fc(out)
|
116 |
return out
|
117 |
|
118 |
|
119 |
+
def ResNet18(num_classes=1000):
|
120 |
+
return ResNet(BasicBlock, [2, 2, 2, 2], num_classes)
|
121 |
+
|
122 |
+
|
123 |
+
def ResNet34(num_classes=1000):
|
124 |
+
return ResNet(BasicBlock, [3, 4, 6, 3], num_classes)
|
125 |
+
|
126 |
+
|
127 |
+
def ResNet50(num_classes=1000):
|
128 |
+
return ResNet(Bottleneck, [3, 4, 6, 3], num_classes)
|
129 |
+
|
130 |
+
|
131 |
+
def ResNet101(num_classes=1000):
|
132 |
+
return ResNet(Bottleneck, [3, 4, 23, 3], num_classes)
|
133 |
+
|
134 |
+
|
135 |
+
def ResNet152(num_classes=1000):
|
136 |
+
return ResNet(Bottleneck, [3, 8, 36, 3], num_classes)
|
137 |
+
|
138 |
+
|
139 |
+
class ClassifierHead(nn.Module):
|
140 |
+
def __init__(self, in_features, num_classes):
|
141 |
+
super().__init__()
|
142 |
+
self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
|
143 |
+
self.max_pool = nn.AdaptiveMaxPool2d((1, 1))
|
144 |
+
|
145 |
+
self.classifier = nn.Sequential(
|
146 |
+
nn.Linear(in_features * 2, 1024),
|
147 |
+
nn.BatchNorm1d(1024),
|
148 |
+
nn.ReLU(),
|
149 |
+
nn.Dropout(0.5),
|
150 |
+
nn.Linear(1024, 512),
|
151 |
+
nn.BatchNorm1d(512),
|
152 |
+
nn.ReLU(),
|
153 |
+
nn.Dropout(0.3),
|
154 |
+
nn.Linear(512, num_classes),
|
155 |
+
)
|
156 |
+
|
157 |
+
def forward(self, x):
|
158 |
+
avg_pooled = self.avg_pool(x).flatten(1)
|
159 |
+
max_pooled = self.max_pool(x).flatten(1)
|
160 |
+
features = torch.cat([avg_pooled, max_pooled], dim=1)
|
161 |
+
return self.classifier(features)
|
162 |
+
|
163 |
+
|
164 |
+
class ResNetUNet(ResNet):
|
165 |
+
def __init__(self, block, num_blocks, num_classes=1000):
|
166 |
+
super().__init__(block, num_blocks, num_classes)
|
167 |
+
|
168 |
+
# Calculate encoder channel sizes
|
169 |
+
self.enc_channels = [
|
170 |
+
64,
|
171 |
+
64 * block.expansion,
|
172 |
+
128 * block.expansion,
|
173 |
+
256 * block.expansion,
|
174 |
+
512 * block.expansion,
|
175 |
+
]
|
176 |
+
|
177 |
+
# Replace t_max_avg_pooling with standard avgpool
|
178 |
+
in_features = 512 * block.expansion
|
179 |
+
self.classifier_head = ClassifierHead(in_features, num_classes)
|
180 |
+
|
181 |
+
# Decoder layers remain the same
|
182 |
+
self.decoder5 = nn.Sequential(
|
183 |
+
nn.Conv2d(2048 + 1024, 1024, 3, padding=1),
|
184 |
+
nn.BatchNorm2d(1024),
|
185 |
+
nn.ReLU(inplace=True),
|
186 |
+
nn.Conv2d(1024, 512, 3, padding=1),
|
187 |
+
nn.BatchNorm2d(512),
|
188 |
+
nn.ReLU(inplace=True),
|
189 |
+
nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True),
|
190 |
+
)
|
191 |
+
|
192 |
+
self.decoder4 = nn.Sequential(
|
193 |
+
nn.Conv2d(512 + 512, 512, 3, padding=1),
|
194 |
+
nn.BatchNorm2d(512),
|
195 |
+
nn.ReLU(inplace=True),
|
196 |
+
nn.Conv2d(512, 256, 3, padding=1),
|
197 |
+
nn.BatchNorm2d(256),
|
198 |
+
nn.ReLU(inplace=True),
|
199 |
+
nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True),
|
200 |
+
)
|
201 |
+
|
202 |
+
self.decoder3 = nn.Sequential(
|
203 |
+
nn.Conv2d(256 + 256, 256, 3, padding=1),
|
204 |
+
nn.BatchNorm2d(256),
|
205 |
+
nn.ReLU(inplace=True),
|
206 |
+
nn.Conv2d(256, 128, 3, padding=1),
|
207 |
+
nn.BatchNorm2d(128),
|
208 |
+
nn.ReLU(inplace=True),
|
209 |
+
nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True),
|
210 |
+
)
|
211 |
+
|
212 |
+
self.decoder2 = nn.Sequential(
|
213 |
+
nn.Conv2d(128 + 64, 128, 3, padding=1),
|
214 |
+
nn.BatchNorm2d(128),
|
215 |
+
nn.ReLU(inplace=True),
|
216 |
+
nn.Conv2d(128, 64, 3, padding=1),
|
217 |
+
nn.BatchNorm2d(64),
|
218 |
+
nn.ReLU(inplace=True),
|
219 |
+
nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True),
|
220 |
+
)
|
221 |
+
|
222 |
+
self.final_conv = nn.Sequential(
|
223 |
+
nn.Conv2d(64, 32, 3, padding=1),
|
224 |
+
nn.BatchNorm2d(32),
|
225 |
+
nn.ReLU(inplace=True),
|
226 |
+
nn.Conv2d(32, 1, 1),
|
227 |
+
nn.Sigmoid(),
|
228 |
+
)
|
229 |
+
|
230 |
+
def forward(self, x):
|
231 |
+
input_size = x.shape[-2:]
|
232 |
+
|
233 |
+
# Encoder path
|
234 |
+
x = torch.relu(self.bn1(self.conv1(x)))
|
235 |
+
e1 = self.maxpool(x)
|
236 |
+
|
237 |
+
e2 = self.layer1(e1)
|
238 |
+
e3 = self.layer2(e2)
|
239 |
+
e4 = self.layer3(e3)
|
240 |
+
e5 = self.layer4(e4)
|
241 |
+
|
242 |
+
# Get segmentation first
|
243 |
+
e4_resized = F.interpolate(
|
244 |
+
e4, size=e5.shape[-2:], mode="bilinear", align_corners=True
|
245 |
+
)
|
246 |
+
d5 = self.decoder5(torch.cat([e5, e4_resized], dim=1))
|
247 |
+
|
248 |
+
e3_resized = F.interpolate(
|
249 |
+
e3, size=d5.shape[-2:], mode="bilinear", align_corners=True
|
250 |
+
)
|
251 |
+
d4 = self.decoder4(torch.cat([d5, e3_resized], dim=1))
|
252 |
+
|
253 |
+
e2_resized = F.interpolate(
|
254 |
+
e2, size=d4.shape[-2:], mode="bilinear", align_corners=True
|
255 |
+
)
|
256 |
+
d3 = self.decoder3(torch.cat([d4, e2_resized], dim=1))
|
257 |
+
|
258 |
+
e1_resized = F.interpolate(
|
259 |
+
e1, size=d3.shape[-2:], mode="bilinear", align_corners=True
|
260 |
+
)
|
261 |
+
d2 = self.decoder2(torch.cat([d3, e1_resized], dim=1))
|
262 |
+
|
263 |
+
seg_out = self.final_conv(d2)
|
264 |
+
seg_out = F.interpolate(
|
265 |
+
seg_out, size=input_size, mode="bilinear", align_corners=True
|
266 |
+
)
|
267 |
+
|
268 |
+
# Use segmentation to mask features before classification
|
269 |
+
# Upsample segmentation mask to match feature size
|
270 |
+
attention_mask = F.interpolate(
|
271 |
+
seg_out, size=e5.shape[2:], mode="bilinear", align_corners=True
|
272 |
+
)
|
273 |
+
|
274 |
+
# Apply attention mask to features
|
275 |
+
attended_features = e5 * (0.25 + attention_mask)
|
276 |
+
|
277 |
+
# Use new classifier head
|
278 |
+
cls_out = self.classifier_head(attended_features)
|
279 |
+
|
280 |
+
return cls_out, seg_out
|
281 |
+
|
282 |
+
|
283 |
+
# Helper functions without K and T parameters
|
284 |
+
def ResNet18UNet(num_classes=1000):
|
285 |
+
return ResNetUNet(BasicBlock, [2, 2, 2, 2], num_classes)
|
286 |
|
287 |
|
288 |
+
def ResNet34UNet(num_classes=1000):
|
289 |
+
return ResNetUNet(BasicBlock, [3, 4, 6, 3], num_classes)
|
290 |
|
291 |
|
292 |
+
def ResNet50UNet(num_classes=1000):
|
293 |
+
return ResNetUNet(Bottleneck, [3, 4, 6, 3], num_classes)
|
294 |
|
295 |
|
296 |
+
def ResNet101UNet(num_classes=1000):
|
297 |
+
return ResNetUNet(Bottleneck, [3, 4, 23, 3], num_classes)
|
298 |
|
299 |
|
300 |
+
def ResNet152UNet(num_classes=1000):
|
301 |
+
return ResNetUNet(Bottleneck, [3, 8, 36, 3], num_classes)
|