|
import gradio as gr |
|
import torch |
|
from PIL import Image |
|
import torchvision.transforms as transforms |
|
import numpy as np |
|
from safetensors.torch import load_model, save_model |
|
from models import * |
|
import os |
|
|
|
|
|
class WasteClassifier: |
|
def __init__(self, model, class_names, device): |
|
self.model = model |
|
self.class_names = class_names |
|
self.device = device |
|
self.transform = transforms.Compose( |
|
[ |
|
transforms.Resize((384, 384)), |
|
transforms.ToTensor(), |
|
transforms.Normalize( |
|
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] |
|
), |
|
] |
|
) |
|
|
|
def predict(self, image): |
|
self.model.eval() |
|
|
|
if not isinstance(image, Image.Image): |
|
image = Image.fromarray(image) |
|
|
|
original_size = image.size |
|
img_tensor = self.transform(image).unsqueeze(0).to(self.device) |
|
|
|
with torch.no_grad(): |
|
outputs = self.model(img_tensor) |
|
probabilities = torch.nn.functional.softmax(outputs, dim=1) |
|
|
|
probs = probabilities[0].cpu().numpy() |
|
pred_class = self.class_names[np.argmax(probs)] |
|
confidence = np.max(probs) |
|
|
|
results = { |
|
"predicted_class": pred_class, |
|
"confidence": confidence, |
|
"class_probabilities": { |
|
class_name: float(prob) |
|
for class_name, prob in zip(self.class_names, probs) |
|
}, |
|
} |
|
|
|
return results |
|
|
|
|
|
def interface(classifier): |
|
def process_image(image): |
|
results = classifier.predict(image) |
|
|
|
output_str = f"Predicted Class: {results['predicted_class']}\n" |
|
output_str += f"Confidence: {results['confidence']*100:.2f}%\n\n" |
|
output_str += "Class Probabilities:\n" |
|
|
|
sorted_probs = sorted( |
|
results["class_probabilities"].items(), key=lambda x: x[1], reverse=True |
|
) |
|
|
|
for class_name, prob in sorted_probs: |
|
output_str += f"{class_name}: {prob*100:.2f}%\n" |
|
|
|
return output_str |
|
|
|
demo = gr.Interface( |
|
fn=process_image, |
|
inputs=[gr.Image(type="pil", label="Upload Image")], |
|
outputs=[gr.Textbox(label="Classification Results")], |
|
title="Waste Classification System", |
|
description=""" |
|
Upload an image of waste to classify it into different categories. |
|
The model will predict the type of waste and show confidence scores for each category. |
|
""", |
|
examples=( |
|
[["example1.jpg"], ["example2.jpg"], ["example3.jpg"]] |
|
if os.path.exists("example1.jpg") |
|
else None |
|
), |
|
analytics_enabled=False, |
|
theme="default", |
|
) |
|
|
|
return demo |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
class_names = [ |
|
"Cardboard", |
|
"Food Organics", |
|
"Glass", |
|
"Metal", |
|
"Miscellaneous Trash", |
|
"Paper", |
|
"Plastic", |
|
"Textile Trash", |
|
"Vegetation", |
|
] |
|
best_model = ResNet50(num_classes=len(class_names)) |
|
best_model = best_model.to(device) |
|
load_model( |
|
best_model, |
|
os.path.join(os.path.dirname(os.path.abspath(__file__)), "bjf8fp.safetensors"), |
|
) |
|
|
|
classifier = WasteClassifier(best_model, class_names, device) |
|
|
|
demo = interface(classifier) |
|
demo.launch() |
|
|