import torch import torch.nn as nn class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d( in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False ) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d( planes, planes, kernel_size=3, stride=1, padding=1, bias=False ) self.bn2 = nn.BatchNorm2d(planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion * planes: self.shortcut = nn.Sequential( nn.Conv2d( in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False, ), nn.BatchNorm2d(self.expansion * planes), ) def forward(self, x): out = torch.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = torch.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, in_planes, planes, stride=1): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d( planes, planes, kernel_size=3, stride=stride, padding=1, bias=False ) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d( planes, self.expansion * planes, kernel_size=1, bias=False ) self.bn3 = nn.BatchNorm2d(self.expansion * planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion * planes: self.shortcut = nn.Sequential( nn.Conv2d( in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False, ), nn.BatchNorm2d(self.expansion * planes), ) def forward(self, x): out = torch.relu(self.bn1(self.conv1(x))) out = torch.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) out += self.shortcut(x) out = torch.relu(out) return out class ResNet(nn.Module): def __init__(self, block, num_blocks, num_classes=1000, K=10, T=0.5): super(ResNet, self).__init__() self.in_planes = 64 self.K = K self.T = T self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) self.fc = nn.Linear(512 * block.expansion, num_classes) def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1] * (num_blocks - 1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def t_max_avg_pooling(self, x): B, C, H, W = x.shape x_flat = x.view(B, C, -1) top_k_values, _ = torch.topk(x_flat, self.K, dim=2) max_values = top_k_values.max(dim=2)[0] avg_values = top_k_values.mean(dim=2) output = torch.where(max_values >= self.T, max_values, avg_values) return output def forward(self, x): out = torch.relu(self.bn1(self.conv1(x))) out = self.maxpool(out) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = self.t_max_avg_pooling(out) out = out.view(out.size(0), -1) out = self.fc(out) return out def ResNet18(num_classes=1000, K=10, T=0.5): return ResNet(BasicBlock, [2, 2, 2, 2], num_classes, K, T) def ResNet34(num_classes=1000, K=10, T=0.5): return ResNet(BasicBlock, [3, 4, 6, 3], num_classes, K, T) def ResNet50(num_classes=1000, K=10, T=0.5): return ResNet(Bottleneck, [3, 4, 6, 3], num_classes, K, T) def ResNet101(num_classes=1000, K=10, T=0.5): return ResNet(Bottleneck, [3, 4, 23, 3], num_classes, K, T) def ResNet152(num_classes=1000, K=10, T=0.5): return ResNet(Bottleneck, [3, 8, 36, 3], num_classes, K, T)