File size: 4,831 Bytes
5c7c7d5
28fcd19
76a154f
2bc6f48
76a154f
b1c12fa
76a154f
d534002
4e683ec
76a154f
 
4375b7f
76a154f
4e683ec
bee5b00
ca1953e
4a32d8a
76a154f
4a32d8a
 
 
76a154f
 
da78e50
 
ca1953e
da78e50
 
 
 
 
 
ca1953e
2bc6f48
 
 
 
 
ca1953e
2bc6f48
 
5c7c7d5
76a154f
 
4e683ec
76a154f
ca1953e
4e683ec
 
 
 
 
 
ca1953e
88bb7df
4e683ec
 
 
 
 
 
6111f2c
 
 
 
 
4e683ec
 
 
6111f2c
4e683ec
 
 
 
 
 
 
 
 
 
 
76a154f
4e683ec
 
 
 
76a154f
b11e705
4e683ec
 
 
a400f4b
9f0cba5
4e683ec
 
76a154f
 
 
bee5b00
4e683ec
 
 
76a154f
 
 
4e683ec
 
 
 
76a154f
 
 
4e683ec
 
 
 
76a154f
 
 
 
4e683ec
 
 
 
 
 
 
 
 
 
 
02ba784
 
4e683ec
 
 
b404cf6
 
 
 
3525367
b404cf6
 
76a154f
4e683ec
da78e50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import os
from threading import Thread
from typing import Iterator

import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

DESCRIPTION = """\
# Nekochu/Luminia-13B-v3
This Space demonstrates model Nekochu/Luminia-13B-v3 by Nekochu, a Llama 2 model with 13B parameters fine-tuned for SD gen prompt 
"""

LICENSE = """
<p/>
---.
"""

models_cache = {}

def load_model(model_id):
    if model_id not in models_cache:
        model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", load_in_4bit=True)
        tokenizer = AutoTokenizer.from_pretrained(model_id)
        tokenizer.use_default_system_prompt = False
        models_cache[model_id] = (model, tokenizer)
    return models_cache[model_id]

if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"

if torch.cuda.is_available():
    model_id = "Nekochu/Luminia-13B-v3"
    model, tokenizer = load_model(model_id)


@spaces.GPU(duration=120)
def generate(
    message: str,
    chat_history: list[tuple[str, str]],
    system_prompt: str,
    model_id: str = "Nekochu/Luminia-13B-v3",
    max_new_tokens: int = 1024,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
) -> Iterator[str]:
    model, tokenizer = load_model(model_id)
    conversation = []
    if system_prompt:
        conversation.append({"role": "system", "content": system_prompt})
    for user, assistant in chat_history:
        conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        repetition_penalty=repetition_penalty,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)


chat_interface = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Textbox(label="System prompt", lines=6),
        gr.Textbox(label="Model ID", value="Nekochu/Luminia-13B-v3", placeholder="Enter a model ID here, e.g. Nekochu/Llama-2-13B-German-ORPO"),
        gr.Slider(
            label="Max new tokens",
            minimum=1,
            maximum=MAX_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_MAX_NEW_TOKENS,
        ),
        gr.Slider(
            label="Temperature",
            minimum=0.1,
            maximum=4.0,
            step=0.1,
            value=0.6,
        ),
        gr.Slider(
            label="Top-p (nucleus sampling)",
            minimum=0.05,
            maximum=1.0,
            step=0.05,
            value=0.9,
        ),
        gr.Slider(
            label="Top-k",
            minimum=1,
            maximum=1000,
            step=1,
            value=50,
        ),
        gr.Slider(
            label="Repetition penalty",
            minimum=1.0,
            maximum=2.0,
            step=0.05,
            value=1.2,
        ),
    ],
    stop_btn=None,
    examples=[
        ["### Instruction: Create stable diffusion metadata based on the given english description. Luminia ### Input: favorites and popular SFW ### Response:"],
        ["### Instruction: Provide tips on stable diffusion to optimize low token prompts and enhance quality include prompt example. ### Response:"],
    ],
)

with gr.Blocks(css="style.css") as demo:
   gr.Markdown(DESCRIPTION)
   with gr.Row():
       gr.DuplicateButton(value="GPU Ver", elem_id="duplicate-button")
       gr.HTML("""<a href="https://huggingface.co/spaces/Nekochu/Luminia-13B_SD_Prompt/tree/Luminia-13B-v3-GGUF" style="margin:0 0 0 8px; padding:2px 8px; border:1px solid; border-radius:4px; text-decoration:none; font-size:0.9em;">or clone only the GGUF branch for free CPU Ver</a>""")
   chat_interface.render()
   gr.Markdown(LICENSE)

if __name__ == "__main__":
    demo.queue(max_size=20).launch()