Spaces:
Runtime error
Runtime error
File size: 4,212 Bytes
1801c3b b4233e1 1801c3b bac9ad8 1801c3b b4233e1 1801c3b 7969559 1801c3b cd44e6d b4233e1 cd44e6d 1801c3b cd44e6d 1801c3b 4343947 1801c3b 7969559 1801c3b bac9ad8 1801c3b 4343947 1801c3b 7b9d833 1801c3b 7969559 1801c3b fe577c4 ba7f790 7969559 498eef9 7b9d833 fe577c4 1801c3b b4233e1 7453c0d 7969559 bac9ad8 1801c3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
import base64
import hashlib
import os
import subprocess
from dataclasses import dataclass
from typing import Final
import faiss
import numpy as np
import pandas as pd
import streamlit as st
from streamlit.logger import get_logger
from pipeline import clip_wrapper
from pipeline.process_videos import DATAFRAME_PATH
NUM_FRAMES_TO_RETURN = 21
logger = get_logger(__name__)
class SemanticSearcher:
def __init__(self, dataset: pd.DataFrame):
dim_columns = dataset.filter(regex="^dim_").columns
self.embedder = clip_wrapper.ClipWrapper().texts2vec
self.metadata = dataset.drop(columns=dim_columns)
self.index = faiss.IndexFlatIP(len(dim_columns))
self.index.add(np.ascontiguousarray(dataset[dim_columns].to_numpy(np.float32)))
def search(self, query: str) -> list["SearchResult"]:
v = self.embedder([query]).detach().numpy()
D, I = self.index.search(v, NUM_FRAMES_TO_RETURN)
return [
SearchResult(
video_id=row["video_id"],
frame_idx=row["frame_idx"],
timestamp=row["timestamp"],
base64_image=row["base64_image"],
score=score,
)
for score, (_, row) in zip(D[0], self.metadata.iloc[I[0]].iterrows())
]
@st.cache_resource
def get_semantic_searcher():
return SemanticSearcher(pd.read_parquet(DATAFRAME_PATH))
@st.cache_data
def get_git_hash() -> str:
return subprocess.check_output(["git", "rev-parse", "HEAD"]).decode().strip()
@dataclass
class SearchResult:
video_id: str
frame_idx: int
timestamp: float
base64_image: str
score: float
def get_video_url(video_id: str, timestamp: float) -> str:
timestamp = max(0, timestamp - 1)
return f"https://www.youtube.com/watch?v={video_id}&t={int(timestamp)}"
def display_search_results(results: list[SearchResult]) -> None:
col_count = 3 # Number of videos per row
col_num = 0 # Counter to keep track of the current column
row = st.empty() # Placeholder for the current row
for i, result in enumerate(results):
if col_num == 0:
row = st.columns(col_count) # Create a new row of columns
with row[col_num]:
# Apply CSS styling to the video container
st.markdown(
"""
<style>
.video-container {
position: relative;
padding-bottom: 56.25%;
padding-top: 30px;
height: 0;
overflow: hidden;
}
.video-container iframe,
.video-container object,
.video-container embed {
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;
}
</style>
""",
unsafe_allow_html=True,
)
st.markdown(
f"""
<a href="{get_video_url(result.video_id, result.timestamp)}">
<img src="data:image/jpeg;base64,{result.base64_image.decode()}" alt="frame {result.frame_idx} timestamp {int(result.timestamp)}" width="100%">
</a>
""",
unsafe_allow_html=True,
)
col_num += 1
if col_num >= col_count:
col_num = 0
def main():
st.set_page_config(page_title="video-semantic-search", layout="wide")
st.header("Visual content search over music videos")
st.markdown("_App by Ben Tenmann and Sidney Radcliffe_")
searcher = get_semantic_searcher()
num_videos = len(searcher.metadata.video_id.unique())
st.text_input(
f"What are you looking for? Search over {num_videos} music videos.", key="query"
)
query = st.session_state["query"]
if query:
logger.info(f"Recieved query... {hashlib.md5(query.encode()).hexdigest()}")
st.text("Click image to open video")
display_search_results(searcher.search(query))
st.text(f"Build: {get_git_hash()[0:7]}")
if __name__ == "__main__":
main()
|