Spaces:
Runtime error
Runtime error
File size: 3,829 Bytes
1801c3b 7969559 1801c3b cd44e6d 1801c3b cd44e6d 1801c3b 4343947 1801c3b 7969559 1801c3b 4343947 1801c3b 4343947 1801c3b 7969559 1801c3b fe577c4 ba7f790 7969559 fe577c4 1801c3b 7453c0d 7969559 1801c3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
import base64
import os
from dataclasses import dataclass
from typing import Final
import faiss
import numpy as np
import pandas as pd
import streamlit as st
from pipeline import clip_wrapper
from pipeline.process_videos import DATAFRAME_PATH
NUM_FRAMES_TO_RETURN = 21
class SemanticSearcher:
def __init__(self, dataset: pd.DataFrame):
dim_columns = dataset.filter(regex="^dim_").columns
self.embedder = clip_wrapper.ClipWrapper().texts2vec
self.metadata = dataset.drop(columns=dim_columns)
self.index = faiss.IndexFlatIP(len(dim_columns))
self.index.add(np.ascontiguousarray(dataset[dim_columns].to_numpy(np.float32)))
def search(self, query: str) -> list["SearchResult"]:
v = self.embedder([query]).detach().numpy()
D, I = self.index.search(v, NUM_FRAMES_TO_RETURN)
return [
SearchResult(
video_id=row["video_id"],
frame_idx=row["frame_idx"],
timestamp=row["timestamp"],
base64_image=row["base64_image"],
score=score,
)
for score, (_, row) in zip(D[0], self.metadata.iloc[I[0]].iterrows())
]
@st.cache_resource
def get_semantic_searcher():
return SemanticSearcher(pd.read_parquet(DATAFRAME_PATH))
@dataclass
class SearchResult:
video_id: str
frame_idx: int
timestamp: float
base64_image: str
score: float
def get_video_url(video_id: str, timestamp: float) -> str:
timestamp = max(0, timestamp - 3) # Show 3 seconds before the query
return f"https://www.youtube.com/watch?v={video_id}&t={int(timestamp)}"
def display_search_results(results: list[SearchResult]) -> None:
col_count = 3 # Number of videos per row
col_num = 0 # Counter to keep track of the current column
row = st.empty() # Placeholder for the current row
for i, result in enumerate(results):
if col_num == 0:
row = st.columns(col_count) # Create a new row of columns
with row[col_num]:
# Apply CSS styling to the video container
st.markdown(
"""
<style>
.video-container {
position: relative;
padding-bottom: 56.25%;
padding-top: 30px;
height: 0;
overflow: hidden;
}
.video-container iframe,
.video-container object,
.video-container embed {
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;
}
</style>
""",
unsafe_allow_html=True,
)
st.markdown(
f"""
<a href="{get_video_url(result.video_id, result.timestamp)}">
<img src="data:image/jpeg;base64,{result.base64_image.decode()}" alt="frame {result.frame_idx} timestamp {int(result.timestamp)}" width="100%">
</a>
""",
unsafe_allow_html=True,
)
col_num += 1
if col_num >= col_count:
col_num = 0
def main():
st.set_page_config(page_title="video-semantic-search", layout="wide")
st.header("Visual content search over music videos")
st.markdown("_App by Ben Tenmann and Sidney Radcliffe_")
searcher = get_semantic_searcher()
st.text_input(f"What are you looking for? Search over {len(searcher.metadata)} music videos.", key="query")
query = st.session_state["query"]
if query:
st.text("Click image to open video")
display_search_results(searcher.search(query))
if __name__ == "__main__":
main()
|