sradc
initial commit
1801c3b
raw
history blame
3.81 kB
import base64
import os
from dataclasses import dataclass
from typing import Final
import faiss
import numpy as np
import pandas as pd
import streamlit as st
from pipeline import clip_wrapper
class SemanticSearcher:
def __init__(self, dataset: pd.DataFrame):
dim_columns = dataset.filter(regex="^dim_").columns
self.embedder = clip_wrapper.ClipWrapper().texts2vec
self.metadata = dataset.drop(columns=dim_columns)
self.index = faiss.IndexFlatIP(len(dim_columns))
self.index.add(np.ascontiguousarray(dataset[dim_columns].to_numpy(np.float32)))
def search(self, query: str) -> list["SearchResult"]:
v = self.embedder([query]).detach().numpy()
D, I = self.index.search(v, 10)
return [
SearchResult(
video_id=row["video_id"],
frame_idx=row["frame_idx"],
timestamp=row["timestamp"],
score=score,
)
for score, (_, row) in zip(D[0], self.metadata.iloc[I[0]].iterrows())
]
DATASET_PATH: Final[str] = os.environ.get("DATASET_PATH", "data/dataset.parquet")
SEARCHER: Final[SemanticSearcher] = SemanticSearcher(pd.read_parquet(DATASET_PATH))
@dataclass
class SearchResult:
video_id: str
frame_idx: int
timestamp: float
score: float
def get_video_url(video_id: str, timestamp: float) -> str:
return f"https://www.youtube.com/watch?v={video_id}&t={int(timestamp)}"
def display_search_results(results: list[SearchResult]) -> None:
col_count = 3 # Number of videos per row
col_num = 0 # Counter to keep track of the current column
row = st.empty() # Placeholder for the current row
for i, result in enumerate(results):
if col_num == 0:
row = st.columns(col_count) # Create a new row of columns
with row[col_num]:
# Apply CSS styling to the video container
st.markdown(
"""
<style>
.video-container {
position: relative;
padding-bottom: 56.25%;
padding-top: 30px;
height: 0;
overflow: hidden;
}
.video-container iframe,
.video-container object,
.video-container embed {
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;
}
</style>
""",
unsafe_allow_html=True,
)
# Display the embedded YouTube video
# st.video(get_video_url(result.video_id), start_time=int(result.timestamp))
# st.image(f"data/images/{result.video_id}/{result.frame_idx}.jpg")
with open(
f"data/images/{result.video_id}/{result.frame_idx}.jpg", "rb"
) as f:
image = f.read()
encoded = base64.b64encode(image).decode()
st.markdown(
f"""
<a href="{get_video_url(result.video_id, result.timestamp)}">
<img src="data:image/jpeg;base64,{encoded}" alt="frame {result.frame_idx}" width="100%">
</a>
""",
unsafe_allow_html=True,
)
col_num += 1
if col_num >= col_count:
col_num = 0
def main():
st.set_page_config(page_title="video-semantic-search", layout="wide")
st.header("Video Semantic Search")
st.text_input("What are you looking for?", key="query")
query = st.session_state["query"]
if query:
display_search_results(SEARCHER.search(query))
if __name__ == "__main__":
main()