Spaces:
Runtime error
Runtime error
sradc
commited on
Commit
β’
7e356f1
1
Parent(s):
5a9c0da
nb to surgically fix the timestamps in the parquet file
Browse files- _dev/fix_timestamp.ipynb +345 -0
_dev/fix_timestamp.ipynb
ADDED
@@ -0,0 +1,345 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 14,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import pandas as pd\n",
|
10 |
+
"import cv2\n",
|
11 |
+
"from tqdm import tqdm"
|
12 |
+
]
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"cell_type": "code",
|
16 |
+
"execution_count": 15,
|
17 |
+
"metadata": {},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"dataframes = [\n",
|
21 |
+
" \"../data/dataset-unfiltered.parquet\",\n",
|
22 |
+
" \"../data/dataset.parquet\",\n",
|
23 |
+
"]\n",
|
24 |
+
"df_path = dataframes[1]"
|
25 |
+
]
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"cell_type": "code",
|
29 |
+
"execution_count": 16,
|
30 |
+
"metadata": {},
|
31 |
+
"outputs": [],
|
32 |
+
"source": [
|
33 |
+
"df = pd.read_parquet(df_path)"
|
34 |
+
]
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"cell_type": "code",
|
38 |
+
"execution_count": 17,
|
39 |
+
"metadata": {},
|
40 |
+
"outputs": [
|
41 |
+
{
|
42 |
+
"data": {
|
43 |
+
"text/html": [
|
44 |
+
"<div>\n",
|
45 |
+
"<style scoped>\n",
|
46 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
47 |
+
" vertical-align: middle;\n",
|
48 |
+
" }\n",
|
49 |
+
"\n",
|
50 |
+
" .dataframe tbody tr th {\n",
|
51 |
+
" vertical-align: top;\n",
|
52 |
+
" }\n",
|
53 |
+
"\n",
|
54 |
+
" .dataframe thead th {\n",
|
55 |
+
" text-align: right;\n",
|
56 |
+
" }\n",
|
57 |
+
"</style>\n",
|
58 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
59 |
+
" <thead>\n",
|
60 |
+
" <tr style=\"text-align: right;\">\n",
|
61 |
+
" <th></th>\n",
|
62 |
+
" <th>video_id</th>\n",
|
63 |
+
" <th>frame_idx</th>\n",
|
64 |
+
" <th>timestamp</th>\n",
|
65 |
+
" <th>base64_image</th>\n",
|
66 |
+
" <th>dim_0</th>\n",
|
67 |
+
" <th>dim_1</th>\n",
|
68 |
+
" <th>dim_2</th>\n",
|
69 |
+
" <th>dim_3</th>\n",
|
70 |
+
" <th>dim_4</th>\n",
|
71 |
+
" <th>dim_5</th>\n",
|
72 |
+
" <th>...</th>\n",
|
73 |
+
" <th>dim_502</th>\n",
|
74 |
+
" <th>dim_503</th>\n",
|
75 |
+
" <th>dim_504</th>\n",
|
76 |
+
" <th>dim_505</th>\n",
|
77 |
+
" <th>dim_506</th>\n",
|
78 |
+
" <th>dim_507</th>\n",
|
79 |
+
" <th>dim_508</th>\n",
|
80 |
+
" <th>dim_509</th>\n",
|
81 |
+
" <th>dim_510</th>\n",
|
82 |
+
" <th>dim_511</th>\n",
|
83 |
+
" </tr>\n",
|
84 |
+
" </thead>\n",
|
85 |
+
" <tbody>\n",
|
86 |
+
" <tr>\n",
|
87 |
+
" <th>0</th>\n",
|
88 |
+
" <td>8Ilh1ewceco</td>\n",
|
89 |
+
" <td>145</td>\n",
|
90 |
+
" <td>5.0</td>\n",
|
91 |
+
" <td>b'/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgH...</td>\n",
|
92 |
+
" <td>0.009040</td>\n",
|
93 |
+
" <td>0.003338</td>\n",
|
94 |
+
" <td>0.029684</td>\n",
|
95 |
+
" <td>-0.033058</td>\n",
|
96 |
+
" <td>0.040864</td>\n",
|
97 |
+
" <td>-0.006447</td>\n",
|
98 |
+
" <td>...</td>\n",
|
99 |
+
" <td>0.033575</td>\n",
|
100 |
+
" <td>-0.019076</td>\n",
|
101 |
+
" <td>0.047166</td>\n",
|
102 |
+
" <td>-0.010574</td>\n",
|
103 |
+
" <td>-0.018608</td>\n",
|
104 |
+
" <td>-0.013465</td>\n",
|
105 |
+
" <td>-0.020017</td>\n",
|
106 |
+
" <td>0.086240</td>\n",
|
107 |
+
" <td>-0.029653</td>\n",
|
108 |
+
" <td>0.035949</td>\n",
|
109 |
+
" </tr>\n",
|
110 |
+
" <tr>\n",
|
111 |
+
" <th>1</th>\n",
|
112 |
+
" <td>8Ilh1ewceco</td>\n",
|
113 |
+
" <td>290</td>\n",
|
114 |
+
" <td>10.0</td>\n",
|
115 |
+
" <td>b'/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgH...</td>\n",
|
116 |
+
" <td>0.004891</td>\n",
|
117 |
+
" <td>0.006527</td>\n",
|
118 |
+
" <td>0.004417</td>\n",
|
119 |
+
" <td>-0.000323</td>\n",
|
120 |
+
" <td>0.006400</td>\n",
|
121 |
+
" <td>-0.024191</td>\n",
|
122 |
+
" <td>...</td>\n",
|
123 |
+
" <td>-0.043122</td>\n",
|
124 |
+
" <td>-0.010695</td>\n",
|
125 |
+
" <td>0.005672</td>\n",
|
126 |
+
" <td>0.000172</td>\n",
|
127 |
+
" <td>-0.014442</td>\n",
|
128 |
+
" <td>-0.014647</td>\n",
|
129 |
+
" <td>-0.016840</td>\n",
|
130 |
+
" <td>0.100285</td>\n",
|
131 |
+
" <td>0.013794</td>\n",
|
132 |
+
" <td>0.015046</td>\n",
|
133 |
+
" </tr>\n",
|
134 |
+
" <tr>\n",
|
135 |
+
" <th>2</th>\n",
|
136 |
+
" <td>8Ilh1ewceco</td>\n",
|
137 |
+
" <td>435</td>\n",
|
138 |
+
" <td>15.0</td>\n",
|
139 |
+
" <td>b'/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgH...</td>\n",
|
140 |
+
" <td>-0.022159</td>\n",
|
141 |
+
" <td>0.020703</td>\n",
|
142 |
+
" <td>-0.021607</td>\n",
|
143 |
+
" <td>-0.019721</td>\n",
|
144 |
+
" <td>-0.006067</td>\n",
|
145 |
+
" <td>-0.035070</td>\n",
|
146 |
+
" <td>...</td>\n",
|
147 |
+
" <td>-0.017047</td>\n",
|
148 |
+
" <td>-0.018341</td>\n",
|
149 |
+
" <td>-0.006733</td>\n",
|
150 |
+
" <td>-0.007040</td>\n",
|
151 |
+
" <td>-0.008368</td>\n",
|
152 |
+
" <td>0.009755</td>\n",
|
153 |
+
" <td>-0.045662</td>\n",
|
154 |
+
" <td>0.116601</td>\n",
|
155 |
+
" <td>-0.000572</td>\n",
|
156 |
+
" <td>-0.000985</td>\n",
|
157 |
+
" </tr>\n",
|
158 |
+
" <tr>\n",
|
159 |
+
" <th>3</th>\n",
|
160 |
+
" <td>8Ilh1ewceco</td>\n",
|
161 |
+
" <td>580</td>\n",
|
162 |
+
" <td>20.0</td>\n",
|
163 |
+
" <td>b'/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgH...</td>\n",
|
164 |
+
" <td>-0.015903</td>\n",
|
165 |
+
" <td>0.033545</td>\n",
|
166 |
+
" <td>0.009257</td>\n",
|
167 |
+
" <td>-0.033540</td>\n",
|
168 |
+
" <td>0.010586</td>\n",
|
169 |
+
" <td>-0.028067</td>\n",
|
170 |
+
" <td>...</td>\n",
|
171 |
+
" <td>-0.016532</td>\n",
|
172 |
+
" <td>0.012388</td>\n",
|
173 |
+
" <td>0.020868</td>\n",
|
174 |
+
" <td>-0.012635</td>\n",
|
175 |
+
" <td>0.010914</td>\n",
|
176 |
+
" <td>0.009203</td>\n",
|
177 |
+
" <td>-0.010078</td>\n",
|
178 |
+
" <td>0.063971</td>\n",
|
179 |
+
" <td>-0.038024</td>\n",
|
180 |
+
" <td>0.025840</td>\n",
|
181 |
+
" </tr>\n",
|
182 |
+
" <tr>\n",
|
183 |
+
" <th>4</th>\n",
|
184 |
+
" <td>8Ilh1ewceco</td>\n",
|
185 |
+
" <td>725</td>\n",
|
186 |
+
" <td>25.0</td>\n",
|
187 |
+
" <td>b'/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgH...</td>\n",
|
188 |
+
" <td>-0.010193</td>\n",
|
189 |
+
" <td>-0.012323</td>\n",
|
190 |
+
" <td>0.023012</td>\n",
|
191 |
+
" <td>-0.015893</td>\n",
|
192 |
+
" <td>0.047041</td>\n",
|
193 |
+
" <td>0.050783</td>\n",
|
194 |
+
" <td>...</td>\n",
|
195 |
+
" <td>-0.024013</td>\n",
|
196 |
+
" <td>-0.009684</td>\n",
|
197 |
+
" <td>-0.035481</td>\n",
|
198 |
+
" <td>-0.024743</td>\n",
|
199 |
+
" <td>-0.009812</td>\n",
|
200 |
+
" <td>0.035214</td>\n",
|
201 |
+
" <td>-0.008957</td>\n",
|
202 |
+
" <td>0.124215</td>\n",
|
203 |
+
" <td>-0.012410</td>\n",
|
204 |
+
" <td>0.040907</td>\n",
|
205 |
+
" </tr>\n",
|
206 |
+
" </tbody>\n",
|
207 |
+
"</table>\n",
|
208 |
+
"<p>5 rows Γ 516 columns</p>\n",
|
209 |
+
"</div>"
|
210 |
+
],
|
211 |
+
"text/plain": [
|
212 |
+
" video_id frame_idx timestamp \n",
|
213 |
+
"0 8Ilh1ewceco 145 5.0 \\\n",
|
214 |
+
"1 8Ilh1ewceco 290 10.0 \n",
|
215 |
+
"2 8Ilh1ewceco 435 15.0 \n",
|
216 |
+
"3 8Ilh1ewceco 580 20.0 \n",
|
217 |
+
"4 8Ilh1ewceco 725 25.0 \n",
|
218 |
+
"\n",
|
219 |
+
" base64_image dim_0 dim_1 \n",
|
220 |
+
"0 b'/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgH... 0.009040 0.003338 \\\n",
|
221 |
+
"1 b'/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgH... 0.004891 0.006527 \n",
|
222 |
+
"2 b'/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgH... -0.022159 0.020703 \n",
|
223 |
+
"3 b'/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgH... -0.015903 0.033545 \n",
|
224 |
+
"4 b'/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgH... -0.010193 -0.012323 \n",
|
225 |
+
"\n",
|
226 |
+
" dim_2 dim_3 dim_4 dim_5 ... dim_502 dim_503 dim_504 \n",
|
227 |
+
"0 0.029684 -0.033058 0.040864 -0.006447 ... 0.033575 -0.019076 0.047166 \\\n",
|
228 |
+
"1 0.004417 -0.000323 0.006400 -0.024191 ... -0.043122 -0.010695 0.005672 \n",
|
229 |
+
"2 -0.021607 -0.019721 -0.006067 -0.035070 ... -0.017047 -0.018341 -0.006733 \n",
|
230 |
+
"3 0.009257 -0.033540 0.010586 -0.028067 ... -0.016532 0.012388 0.020868 \n",
|
231 |
+
"4 0.023012 -0.015893 0.047041 0.050783 ... -0.024013 -0.009684 -0.035481 \n",
|
232 |
+
"\n",
|
233 |
+
" dim_505 dim_506 dim_507 dim_508 dim_509 dim_510 dim_511 \n",
|
234 |
+
"0 -0.010574 -0.018608 -0.013465 -0.020017 0.086240 -0.029653 0.035949 \n",
|
235 |
+
"1 0.000172 -0.014442 -0.014647 -0.016840 0.100285 0.013794 0.015046 \n",
|
236 |
+
"2 -0.007040 -0.008368 0.009755 -0.045662 0.116601 -0.000572 -0.000985 \n",
|
237 |
+
"3 -0.012635 0.010914 0.009203 -0.010078 0.063971 -0.038024 0.025840 \n",
|
238 |
+
"4 -0.024743 -0.009812 0.035214 -0.008957 0.124215 -0.012410 0.040907 \n",
|
239 |
+
"\n",
|
240 |
+
"[5 rows x 516 columns]"
|
241 |
+
]
|
242 |
+
},
|
243 |
+
"metadata": {},
|
244 |
+
"output_type": "display_data"
|
245 |
+
}
|
246 |
+
],
|
247 |
+
"source": [
|
248 |
+
"display(df.head())"
|
249 |
+
]
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"cell_type": "code",
|
253 |
+
"execution_count": 18,
|
254 |
+
"metadata": {},
|
255 |
+
"outputs": [
|
256 |
+
{
|
257 |
+
"data": {
|
258 |
+
"text/plain": [
|
259 |
+
"60844"
|
260 |
+
]
|
261 |
+
},
|
262 |
+
"execution_count": 18,
|
263 |
+
"metadata": {},
|
264 |
+
"output_type": "execute_result"
|
265 |
+
}
|
266 |
+
],
|
267 |
+
"source": [
|
268 |
+
"# wierdly all the timestamps are rounded to the nearest second o.O\n",
|
269 |
+
"(df[\"timestamp\"].apply(lambda x: x % 1) == 0).sum()"
|
270 |
+
]
|
271 |
+
},
|
272 |
+
{
|
273 |
+
"cell_type": "code",
|
274 |
+
"execution_count": 19,
|
275 |
+
"metadata": {},
|
276 |
+
"outputs": [
|
277 |
+
{
|
278 |
+
"name": "stderr",
|
279 |
+
"output_type": "stream",
|
280 |
+
"text": [
|
281 |
+
"100%|ββββββββββ| 1417/1417 [00:02<00:00, 626.05it/s]\n"
|
282 |
+
]
|
283 |
+
}
|
284 |
+
],
|
285 |
+
"source": [
|
286 |
+
"video_fps = {}\n",
|
287 |
+
"for video_id in tqdm(df.video_id.unique()):\n",
|
288 |
+
" video_path = f\"../data/videos/{video_id}.mp4\"\n",
|
289 |
+
" cap = cv2.VideoCapture(str(video_path))\n",
|
290 |
+
" num_video_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))\n",
|
291 |
+
" fps = cap.get(cv2.CAP_PROP_FPS)\n",
|
292 |
+
" video_fps[video_id] = fps"
|
293 |
+
]
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"cell_type": "code",
|
297 |
+
"execution_count": 20,
|
298 |
+
"metadata": {},
|
299 |
+
"outputs": [],
|
300 |
+
"source": [
|
301 |
+
"def correct_timestamp(row):\n",
|
302 |
+
" # pd.Series([1, 2], index=['foo', 'bar'])\n",
|
303 |
+
" video_id = row[\"video_id\"]\n",
|
304 |
+
" frame_idx = row[\"frame_idx\"]\n",
|
305 |
+
" fps = video_fps[video_id]\n",
|
306 |
+
" timestamp = frame_idx / fps\n",
|
307 |
+
" return timestamp\n",
|
308 |
+
"\n",
|
309 |
+
"\n",
|
310 |
+
"df[\"timestamp\"] = df.apply(correct_timestamp, axis=1)"
|
311 |
+
]
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"cell_type": "code",
|
315 |
+
"execution_count": 22,
|
316 |
+
"metadata": {},
|
317 |
+
"outputs": [],
|
318 |
+
"source": [
|
319 |
+
"df.to_parquet(df_path, index=False)"
|
320 |
+
]
|
321 |
+
}
|
322 |
+
],
|
323 |
+
"metadata": {
|
324 |
+
"kernelspec": {
|
325 |
+
"display_name": "visual-content-search-over-videos",
|
326 |
+
"language": "python",
|
327 |
+
"name": "python3"
|
328 |
+
},
|
329 |
+
"language_info": {
|
330 |
+
"codemirror_mode": {
|
331 |
+
"name": "ipython",
|
332 |
+
"version": 3
|
333 |
+
},
|
334 |
+
"file_extension": ".py",
|
335 |
+
"mimetype": "text/x-python",
|
336 |
+
"name": "python",
|
337 |
+
"nbconvert_exporter": "python",
|
338 |
+
"pygments_lexer": "ipython3",
|
339 |
+
"version": "3.9.16"
|
340 |
+
},
|
341 |
+
"orig_nbformat": 4
|
342 |
+
},
|
343 |
+
"nbformat": 4,
|
344 |
+
"nbformat_minor": 2
|
345 |
+
}
|