srijaydeshpande commited on
Commit
8b74db5
·
verified ·
1 Parent(s): cf408c4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -55
app.py CHANGED
@@ -20,16 +20,6 @@ model_dir = snapshot_download(
20
  repo_id="srijaydeshpande/spadesegresnet"
21
  )
22
 
23
- def superimpose_images(image1, image2, alpha=0.5):
24
- if image1 is None or image2 is None:
25
- return "Please upload both images."
26
- try:
27
- image1 = image1.resize(image2.size)
28
- blended = Image.blend(image1, image2, alpha)
29
- return blended
30
- except Exception as e:
31
- return f"Error superimposing images: {str(e)}"
32
-
33
  class SPADE(nn.Module):
34
  def __init__(self, norm_nc, label_nc, norm):
35
  super().__init__()
@@ -276,7 +266,20 @@ def segment_image(image):
276
 
277
  legend = Image.open('legend.png')
278
 
279
- return image, legend, stats
 
 
 
 
 
 
 
 
 
 
 
 
 
280
 
281
  model_path = os.path.join(model_dir, 'spaderesnet.pt')
282
  model = SPADEResNet(input_nc=3, output_nc=6)
@@ -287,50 +290,13 @@ examples = [
287
  ["sample1.png"],
288
  ["sample2.png"]
289
  ]
290
-
291
- input1 = gr.Image()
292
- output1 = gr.Image()
293
- output2 = gr.Image()
294
- output3 = gr.Image()
295
-
296
- with gr.Blocks() as demo:
297
 
298
- # demo = gr.Interface(
299
- # segment_image,
300
- # inputs=gr.Image(),
301
- # examples=examples,
302
- # outputs=["image", "image", "image"],
303
- # title="Breast Cancer Semantic Segmentation"
304
- # )
305
-
306
- # Segmentation Section
307
- segment_button = gr.Button("Segment Image")
308
- segment_button.click(
309
- segment_image,
310
- inputs=input1,
311
- # examples=examples,
312
- outputs=[output1, output2, output3],
313
- # title="Breast Cancer Semantic Segmentation"
314
- )
315
-
316
- # Superimpose Section
317
- gr.Markdown("### Superimpose Images")
318
-
319
- alpha_slider = gr.Slider(minimum=0, maximum=1, value=0.5, step=0.1, label="Alpha (Transparency)")
320
- superimpose_btn = gr.Button("Superimpose")
321
-
322
- superimpose_btn.click(
323
- superimpose_images,
324
- inputs=[input1, output1, alpha_slider],
325
- outputs=output_image
326
- )
327
-
328
- # demo = gr.Interface(
329
- # segment_image,
330
- # inputs=gr.Image(),
331
- # examples=examples,
332
- # outputs=["image", "image", "image"],
333
- # title="Breast Cancer Semantic Segmentation"
334
- # )
335
 
336
  demo.launch()
 
20
  repo_id="srijaydeshpande/spadesegresnet"
21
  )
22
 
 
 
 
 
 
 
 
 
 
 
23
  class SPADE(nn.Module):
24
  def __init__(self, norm_nc, label_nc, norm):
25
  super().__init__()
 
266
 
267
  legend = Image.open('legend.png')
268
 
269
+ superimposed_image = superimpose_images(img, image)
270
+
271
+ return image, legend, stats, superimposed_image
272
+
273
+ def superimpose_images(image1, image2, alpha=0.5):
274
+ if image1 is None or image2 is None:
275
+ return "Please upload both images."
276
+ try:
277
+ image1 = image1.resize(image2.size)
278
+ blended = Image.blend(image1, image2, alpha)
279
+ return blended
280
+ except Exception as e:
281
+ return f"Error superimposing images: {str(e)}"
282
+
283
 
284
  model_path = os.path.join(model_dir, 'spaderesnet.pt')
285
  model = SPADEResNet(input_nc=3, output_nc=6)
 
290
  ["sample1.png"],
291
  ["sample2.png"]
292
  ]
 
 
 
 
 
 
 
293
 
294
+ demo = gr.Interface(
295
+ segment_image,
296
+ inputs=gr.Image(),
297
+ examples=examples,
298
+ outputs=["image", "image", "image", "image"],
299
+ title="Breast Cancer Semantic Segmentation"
300
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
301
 
302
  demo.launch()