Spaces:
Running
Running
from jira.client import JIRA | |
import pandas as pd | |
def get_details(project_id): | |
# Specify a server key. It should be your | |
# domain name link. yourdomainname.atlassian.net | |
jiraOptions = {'server': "https://srikanthnm.atlassian.net"} | |
# Get a JIRA client instance, pass, | |
# Authentication parameters | |
# and the Server name. | |
# emailID = your emailID | |
# token = token you receive after registration | |
jira = JIRA(options=jiraOptions, basic_auth=( | |
"srikanth.nm@gmail.com", "ATATT3xFfGF09rugcjiT06v8xMayt5ggayMNiwz4b6w07PWQxPvpi4fMDzwwHxKt-v8dGx49uiulIMKHUUYroeS8cXvMKYfi7sQnFsYNfGslPVqSq1BQrzPhTio-xmYOHcit5ijzU9cSGGa7eLXUMxQTsSQjLhtZ-EQPI8h6aki690_-evLFZmU=3910FFD4")) | |
# Search all issues mentioned against a project name. | |
lstKeys = [] | |
lstSummary = [] | |
lstReporter = [] | |
for singleIssue in jira.search_issues(jql_str=f'project = {project_id}'): | |
lstKeys.append(singleIssue.key) | |
lstSummary.append(singleIssue.fields.summary) | |
lstReporter.append(singleIssue.fields.assignee.displayName) | |
df_output = pd.DataFrame() | |
df_output['Key'] = lstKeys | |
df_output['Summary'] = lstSummary | |
df_output['Assignee'] = lstReporter | |
df_output.to_csv('jira.csv', index=False) | |
return df_output | |
def ask_question(strQuery): | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
import pandas as pd | |
tokenizer = AutoTokenizer.from_pretrained("Yale-LILY/reastap-large") | |
model = AutoModelForSeq2SeqLM.from_pretrained("Yale-LILY/reastap-large") | |
table = pd.read_csv("jira.csv") | |
query = strQuery | |
encoding = tokenizer(table=table, query=query, return_tensors="pt") | |
outputs = model.generate(**encoding) | |
return (tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]) | |