|
import os |
|
import time |
|
from fastapi import FastAPI,Request |
|
from fastapi.responses import HTMLResponse |
|
from fastapi.staticfiles import StaticFiles |
|
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings |
|
from llama_index.llms.huggingface import HuggingFaceInferenceAPI |
|
from llama_index.embeddings.huggingface import HuggingFaceEmbedding |
|
from pydantic import BaseModel |
|
from fastapi.responses import JSONResponse |
|
import uuid |
|
import datetime |
|
from fastapi.middleware.cors import CORSMiddleware |
|
from fastapi.templating import Jinja2Templates |
|
from huggingface_hub import InferenceClient |
|
import json |
|
import re |
|
|
|
|
|
|
|
class MessageRequest(BaseModel): |
|
message: str |
|
repo_id = "meta-llama/Meta-Llama-3-8B-Instruct" |
|
llm_client = InferenceClient( |
|
model=repo_id, |
|
token=os.getenv("HF_TOKEN"), |
|
) |
|
def summarize_conversation(inference_client: InferenceClient, history: list): |
|
|
|
history_text = "\n".join([f"{entry['sender']}: {entry['message']}" for entry in history]) |
|
full_prompt = f"{history_text}\n\nSummarize the conversation in three concise points only give me only Summarization in python list formate :\n" |
|
|
|
response = inference_client.post( |
|
json={ |
|
"inputs": full_prompt, |
|
"parameters": {"max_new_tokens": 512}, |
|
"task": "text-generation", |
|
}, |
|
) |
|
|
|
|
|
generated_text = json.loads(response.decode())[0]["generated_text"] |
|
|
|
|
|
matches = re.findall(r'\[(.*?)\]', generated_text) |
|
|
|
|
|
if matches: |
|
|
|
list_items = matches[0].split(',') |
|
cleaned_list = [item.strip() for item in list_items] |
|
return cleaned_list |
|
else: |
|
return generated_text |
|
|
|
|
|
os.environ["HF_TOKEN"] = os.getenv("HF_TOKEN") |
|
app = FastAPI() |
|
|
|
@app.middleware("http") |
|
async def add_security_headers(request: Request, call_next): |
|
response = await call_next(request) |
|
response.headers["Content-Security-Policy"] = "frame-ancestors *; frame-src *; object-src *;" |
|
response.headers["X-Frame-Options"] = "ALLOWALL" |
|
return response |
|
|
|
|
|
|
|
app.add_middleware( |
|
CORSMiddleware, |
|
allow_origins=["*"], |
|
allow_credentials=True, |
|
allow_methods=["*"], |
|
allow_headers=["*"], |
|
) |
|
|
|
|
|
|
|
|
|
@app.get("/favicon.ico") |
|
async def favicon(): |
|
return HTMLResponse("") |
|
|
|
|
|
app.mount("/static", StaticFiles(directory="static"), name="static") |
|
|
|
templates = Jinja2Templates(directory="static") |
|
|
|
Settings.llm = HuggingFaceInferenceAPI( |
|
model_name="meta-llama/Meta-Llama-3-8B-Instruct", |
|
tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct", |
|
context_window=3000, |
|
token=os.getenv("HF_TOKEN"), |
|
max_new_tokens=512, |
|
generate_kwargs={"temperature": 0.1}, |
|
) |
|
Settings.embed_model = HuggingFaceEmbedding( |
|
model_name="BAAI/bge-small-en-v1.5" |
|
) |
|
|
|
PERSIST_DIR = "db" |
|
PDF_DIRECTORY = 'data' |
|
|
|
|
|
os.makedirs(PDF_DIRECTORY, exist_ok=True) |
|
os.makedirs(PERSIST_DIR, exist_ok=True) |
|
chat_history = [] |
|
current_chat_history = [] |
|
def data_ingestion_from_directory(): |
|
documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data() |
|
storage_context = StorageContext.from_defaults() |
|
index = VectorStoreIndex.from_documents(documents) |
|
index.storage_context.persist(persist_dir=PERSIST_DIR) |
|
|
|
def initialize(): |
|
start_time = time.time() |
|
data_ingestion_from_directory() |
|
print(f"Data ingestion time: {time.time() - start_time} seconds") |
|
|
|
initialize() |
|
|
|
|
|
def handle_query(query): |
|
chat_text_qa_msgs = [ |
|
( |
|
"user", |
|
""" |
|
You are the Clara Redfernstech chatbot. Your goal is to provide accurate, professional, and helpful answers to user queries based on the company's data. Always ensure your responses are clear and concise. Give response within 10-15 words only |
|
{context_str} |
|
Question: |
|
{query_str} |
|
""" |
|
) |
|
] |
|
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) |
|
|
|
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR) |
|
index = load_index_from_storage(storage_context) |
|
context_str = "" |
|
for past_query, response in reversed(current_chat_history): |
|
if past_query.strip(): |
|
context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n" |
|
|
|
|
|
query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str) |
|
answer = query_engine.query(query) |
|
|
|
if hasattr(answer, 'response'): |
|
response=answer.response |
|
elif isinstance(answer, dict) and 'response' in answer: |
|
response =answer['response'] |
|
else: |
|
response ="Sorry, I couldn't find an answer." |
|
current_chat_history.append((query, response)) |
|
return response |
|
@app.get("/ch/{id}", response_class=HTMLResponse) |
|
async def load_chat(request: Request, id: str): |
|
return templates.TemplateResponse("index.html", {"request": request, "user_id": id}) |
|
|
|
@app.post("/hist/") |
|
async def save_chat_history(history: dict): |
|
|
|
user_id = history.get('userId') |
|
print(user_id) |
|
if 'history' in history and isinstance(history['history'], list): |
|
print("Received history:", history['history']) |
|
cleaned_summary = summarize_conversation(llm_client, history['history']) |
|
print("Cleaned summary:", cleaned_summary) |
|
return {"summary": cleaned_summary, "message": "Chat history saved"} |
|
else: |
|
return JSONResponse(status_code=400, content={"message": "Invalid history format"}) |
|
@app.post("/webhook") |
|
async def receive_form_data(request: Request): |
|
form_data = await request.json() |
|
|
|
|
|
unique_id = str(uuid.uuid4()) |
|
|
|
|
|
print("Received form data:", form_data) |
|
|
|
|
|
return JSONResponse({"id": unique_id}) |
|
|
|
@app.post("/chat/") |
|
async def chat(request: MessageRequest): |
|
message = request.message |
|
response = handle_query(message) |
|
message_data = { |
|
"sender": "User", |
|
"message": message, |
|
"response": response, |
|
"timestamp": datetime.datetime.now().isoformat() |
|
} |
|
chat_history.append(message_data) |
|
return {"response": response} |
|
@app.get("/") |
|
def read_root(): |
|
return {"message": "Welcome to the API"} |
|
|