Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
import torch | |
from PIL import Image | |
#subprocess.run(["mv","content/custom_data.yaml","./yolov5/data"]) | |
def load_model(): | |
''' | |
Loading hub model & setting the preferences for the model | |
''' | |
model = torch.hub.load('ultralytics/yolov5', 'custom', path='Content/cnn.pt') | |
model.conf = 0.38 | |
model.dnn=True | |
model.agnostic=True | |
return model | |
model=load_model() | |
#, force_reload=True | |
def detect(inp): | |
#g = (size / max(inp.size)) #gain | |
#im = im.resize((int(x * g) for x in im.size), Image.ANTIALIAS) # resize | |
results = model(inp,size=640) # inference | |
print(results) | |
results.render() # updates results.imgs with boxes and labels | |
return Image.fromarray(results.imgs[0]) | |
inp = gr.inputs.Image(type="pil", label="Original Image") | |
output = gr.outputs.Image(type="pil", label="Output Image") | |
io=gr.Interface(fn=detect, inputs=inp, outputs=output, title='Mosquito Habitat Identification',theme='peach') | |
io.launch(debug=True,share=False) | |
#examples=['Content/4.jpg','Content/10.jpg','Content/18.jpg'] | |