clonar-voz / TTS /encoder /dataset.py
Shadhil's picture
voice-clone with single audio sample input
9b2107c
import random
import torch
from torch.utils.data import Dataset
from TTS.encoder.utils.generic_utils import AugmentWAV
class EncoderDataset(Dataset):
def __init__(
self,
config,
ap,
meta_data,
voice_len=1.6,
num_classes_in_batch=64,
num_utter_per_class=10,
verbose=False,
augmentation_config=None,
use_torch_spec=None,
):
"""
Args:
ap (TTS.tts.utils.AudioProcessor): audio processor object.
meta_data (list): list of dataset instances.
seq_len (int): voice segment length in seconds.
verbose (bool): print diagnostic information.
"""
super().__init__()
self.config = config
self.items = meta_data
self.sample_rate = ap.sample_rate
self.seq_len = int(voice_len * self.sample_rate)
self.num_utter_per_class = num_utter_per_class
self.ap = ap
self.verbose = verbose
self.use_torch_spec = use_torch_spec
self.classes, self.items = self.__parse_items()
self.classname_to_classid = {key: i for i, key in enumerate(self.classes)}
# Data Augmentation
self.augmentator = None
self.gaussian_augmentation_config = None
if augmentation_config:
self.data_augmentation_p = augmentation_config["p"]
if self.data_augmentation_p and ("additive" in augmentation_config or "rir" in augmentation_config):
self.augmentator = AugmentWAV(ap, augmentation_config)
if "gaussian" in augmentation_config.keys():
self.gaussian_augmentation_config = augmentation_config["gaussian"]
if self.verbose:
print("\n > DataLoader initialization")
print(f" | > Classes per Batch: {num_classes_in_batch}")
print(f" | > Number of instances : {len(self.items)}")
print(f" | > Sequence length: {self.seq_len}")
print(f" | > Num Classes: {len(self.classes)}")
print(f" | > Classes: {self.classes}")
def load_wav(self, filename):
audio = self.ap.load_wav(filename, sr=self.ap.sample_rate)
return audio
def __parse_items(self):
class_to_utters = {}
for item in self.items:
path_ = item["audio_file"]
class_name = item[self.config.class_name_key]
if class_name in class_to_utters.keys():
class_to_utters[class_name].append(path_)
else:
class_to_utters[class_name] = [
path_,
]
# skip classes with number of samples >= self.num_utter_per_class
class_to_utters = {k: v for (k, v) in class_to_utters.items() if len(v) >= self.num_utter_per_class}
classes = list(class_to_utters.keys())
classes.sort()
new_items = []
for item in self.items:
path_ = item["audio_file"]
class_name = item["emotion_name"] if self.config.model == "emotion_encoder" else item["speaker_name"]
# ignore filtered classes
if class_name not in classes:
continue
# ignore small audios
if self.load_wav(path_).shape[0] - self.seq_len <= 0:
continue
new_items.append({"wav_file_path": path_, "class_name": class_name})
return classes, new_items
def __len__(self):
return len(self.items)
def get_num_classes(self):
return len(self.classes)
def get_class_list(self):
return self.classes
def set_classes(self, classes):
self.classes = classes
self.classname_to_classid = {key: i for i, key in enumerate(self.classes)}
def get_map_classid_to_classname(self):
return dict((c_id, c_n) for c_n, c_id in self.classname_to_classid.items())
def __getitem__(self, idx):
return self.items[idx]
def collate_fn(self, batch):
# get the batch class_ids
labels = []
feats = []
for item in batch:
utter_path = item["wav_file_path"]
class_name = item["class_name"]
# get classid
class_id = self.classname_to_classid[class_name]
# load wav file
wav = self.load_wav(utter_path)
offset = random.randint(0, wav.shape[0] - self.seq_len)
wav = wav[offset : offset + self.seq_len]
if self.augmentator is not None and self.data_augmentation_p:
if random.random() < self.data_augmentation_p:
wav = self.augmentator.apply_one(wav)
if not self.use_torch_spec:
mel = self.ap.melspectrogram(wav)
feats.append(torch.FloatTensor(mel))
else:
feats.append(torch.FloatTensor(wav))
labels.append(class_id)
feats = torch.stack(feats)
labels = torch.LongTensor(labels)
return feats, labels