File size: 1,503 Bytes
cd607b2
 
 
69deff6
7b856a8
f5ec828
eac37df
 
cd607b2
 
7b856a8
69deff6
7b856a8
8200c4e
 
7b856a8
8200c4e
0e4ded8
4e3dc76
7b856a8
8200c4e
 
 
 
4e3dc76
 
 
 
 
7b856a8
 
4e3dc76
8200c4e
4e3dc76
7b856a8
 
4e3dc76
7b856a8
4e3dc76
 
 
 
 
 
7b856a8
 
5b30d27
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# + tags=["hide_inp"]

desc = """
### Named Entity Recognition

Chain that does named entity recognition with arbitrary labels. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/srush/MiniChain/blob/master/examples/ner.ipynb)

(Adapted from [promptify](https://github.com/promptslab/Promptify/blob/main/promptify/prompts/nlp/templates/ner.jinja)).
"""
# -

# $

from minichain import prompt, transform, show, OpenAI
import json

@prompt(OpenAI(), template_file = "ner.pmpt.tpl")
def ner_extract(model, kwargs):
    return model(kwargs)

@transform()
def to_json(chat_output):
    return json.loads(chat_output)

@prompt(OpenAI())
def team_describe(model, inp):
    query = "Can you describe these basketball teams? " + \
        " ".join([i["E"] for i in inp if i["T"] =="Team"])
    return model(query)


def ner(text_input, labels, domain):
    extract = to_json(ner_extract(dict(text_input=text_input, labels=labels, domain=domain)))
    return team_describe(extract)


# $

gradio = show(ner,
              examples=[["An NBA playoff pairing a year ago, the 76ers (39-20) meet the Miami Heat (32-29) for the first time this season on Monday night at home.", "Team, Date", "Sports"]],
              description=desc,
              subprompts=[ner_extract, team_describe],
              code=open("ner.py", "r").read().split("$")[1].strip().strip("#").strip(),
              )

if __name__ == "__main__":
    gradio.queue().launch()