File size: 1,503 Bytes
cd607b2 69deff6 7b856a8 f5ec828 eac37df cd607b2 7b856a8 69deff6 7b856a8 8200c4e 7b856a8 8200c4e 0e4ded8 4e3dc76 7b856a8 8200c4e 4e3dc76 7b856a8 4e3dc76 8200c4e 4e3dc76 7b856a8 4e3dc76 7b856a8 4e3dc76 7b856a8 5b30d27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
# + tags=["hide_inp"]
desc = """
### Named Entity Recognition
Chain that does named entity recognition with arbitrary labels. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/srush/MiniChain/blob/master/examples/ner.ipynb)
(Adapted from [promptify](https://github.com/promptslab/Promptify/blob/main/promptify/prompts/nlp/templates/ner.jinja)).
"""
# -
# $
from minichain import prompt, transform, show, OpenAI
import json
@prompt(OpenAI(), template_file = "ner.pmpt.tpl")
def ner_extract(model, kwargs):
return model(kwargs)
@transform()
def to_json(chat_output):
return json.loads(chat_output)
@prompt(OpenAI())
def team_describe(model, inp):
query = "Can you describe these basketball teams? " + \
" ".join([i["E"] for i in inp if i["T"] =="Team"])
return model(query)
def ner(text_input, labels, domain):
extract = to_json(ner_extract(dict(text_input=text_input, labels=labels, domain=domain)))
return team_describe(extract)
# $
gradio = show(ner,
examples=[["An NBA playoff pairing a year ago, the 76ers (39-20) meet the Miami Heat (32-29) for the first time this season on Monday night at home.", "Team, Date", "Sports"]],
description=desc,
subprompts=[ner_extract, team_describe],
code=open("ner.py", "r").read().split("$")[1].strip().strip("#").strip(),
)
if __name__ == "__main__":
gradio.queue().launch()
|