Spaces:
Runtime error
Runtime error
File size: 7,851 Bytes
d0ce980 7f6bb54 d0ce980 7f6bb54 d29e6b3 05a7e56 7f6bb54 d0ce980 2255dc0 c18749e 7f6bb54 9d23144 d0ce980 2255dc0 d0ce980 7f6bb54 d0ce980 2255dc0 cd78edc d0ce980 cd78edc d0ce980 cd78edc d0ce980 2255dc0 cd78edc 2255dc0 d0ce980 cd78edc d0ce980 2255dc0 d0ce980 05a7e56 cd78edc 05a7e56 9944bd6 05a7e56 d0ce980 05a7e56 d0ce980 05a7e56 d0ce980 05a7e56 d0ce980 bdae13c 9944bd6 bdae13c 9944bd6 bdae13c 9944bd6 bdae13c 05a7e56 9944bd6 31020d7 05a7e56 9944bd6 05a7e56 9d23144 cd78edc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import spaces
import random
import torch
from huggingface_hub import snapshot_download
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
from kolors.pipelines import pipeline_stable_diffusion_xl_chatglm_256_ipadapter, pipeline_stable_diffusion_xl_chatglm_256
from kolors.models.modeling_chatglm import ChatGLMModel
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
from kolors.models import unet_2d_condition
from diffusers import AutoencoderKL, EulerDiscreteScheduler, UNet2DConditionModel
import gradio as gr
import numpy as np
from huggingface_hub import InferenceClient
import os
device = "cuda"
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors")
ckpt_IPA_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-Plus")
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
unet_t2i = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
unet_i2i = unet_2d_condition.UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(f'{ckpt_IPA_dir}/image_encoder',ignore_mismatched_sizes=True).to(dtype=torch.float16, device=device)
ip_img_size = 336
clip_image_processor = CLIPImageProcessor(size=ip_img_size, crop_size=ip_img_size)
pipe_t2i = pipeline_stable_diffusion_xl_chatglm_256.StableDiffusionXLPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet_t2i,
scheduler=scheduler,
force_zeros_for_empty_prompt=False
).to(device)
pipe_i2i = pipeline_stable_diffusion_xl_chatglm_256_ipadapter.StableDiffusionXLPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet_i2i,
scheduler=scheduler,
image_encoder=image_encoder,
feature_extractor=clip_image_processor,
force_zeros_for_empty_prompt=False
).to(device)
if hasattr(pipe_i2i.unet, 'encoder_hid_proj'):
pipe_i2i.unet.text_encoder_hid_proj = pipe_i2i.unet.encoder_hid_proj
pipe_i2i.load_ip_adapter(f'{ckpt_IPA_dir}' , subfolder="", weight_name=["ip_adapter_plus_general.bin"])
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU
def infer(prompt,
ip_adapter_image=None,
ip_adapter_scale=0.5,
negative_prompt="",
seed=0,
randomize_seed=False,
width=1024,
height=1024,
guidance_scale=5.0,
num_inference_steps=25):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
# width์ height๋ฅผ 8์ ๋ฐฐ์๋ก ์กฐ์
width = (width // 8) * 8
height = (height // 8) * 8
if ip_adapter_image is None:
pipe_t2i.to(device)
image = pipe_t2i(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width, # ์กฐ์ ๋ ๊ฐ์ ์ฌ์ฉ
height=height, # ์กฐ์ ๋ ๊ฐ์ ์ฌ์ฉ
generator=generator
).images[0]
image.save("generated_image.jpg")
return image, "generated_image.jpg"
else:
pipe_i2i.to(device)
image_encoder.to(device)
pipe_i2i.image_encoder = image_encoder
pipe_i2i.set_ip_adapter_scale([ip_adapter_scale])
image = pipe_i2i(
prompt=prompt,
ip_adapter_image=[ip_adapter_image],
negative_prompt=negative_prompt,
height=height, # ์กฐ์ ๋ ๊ฐ์ ์ฌ์ฉ
width=width, # ์กฐ์ ๋ ๊ฐ์ ์ฌ์ฉ
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=1,
generator=generator
).images[0]
image.save("generated_image.jpg")
return image, "generated_image.jpg"
css="""
#col-left {
margin: 0 auto;
max-width: 600px;
}
#col-right {
margin: 0 auto;
max-width: 750px;
}
"""
with gr.Blocks(css=css) as Kolors:
with gr.Row():
with gr.Column(elem_id="col-left"):
with gr.Row():
generated_prompt = gr.Textbox(
label="ํ๋กฌํํธ ์
๋ ฅ",
placeholder="์ด๋ฏธ์ง ์์ฑ์ ์ฌ์ฉํ ํ๋กฌํํธ๋ฅผ ์
๋ ฅํด ์ฃผ์ธ์.",
lines=2
)
with gr.Row():
ip_adapter_image = gr.Image(label="์ฐธ๊ณ ํ ์ด๋ฏธ์ง (์ ํ)", type="pil")
with gr.Row(visible=False): # Advanced Settings ์จ๊น
negative_prompt = gr.Textbox(
label="Negative prompt",
placeholder="Enter a negative prompt",
visible=True,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=5.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=10,
maximum=50,
step=1,
value=25,
)
with gr.Row():
width = gr.Slider(
label="๊ฐ๋ก",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="์ธ๋ก",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
ip_adapter_scale = gr.Slider(
label="์ด๋ฏธ์ง ์ํฅ๋ ฅ",
info="1์ ๊ฐ๊น์ธ ์๋ก ์๋ณธ ์ด๋ฏธ์ง๋ฅผ ์ต๋ํ ์ ์งํ๋ฉฐ ์์ฑ๋ฉ๋๋ค.",
minimum=0.0,
maximum=1.0,
step=0.05,
value=0.5,
)
with gr.Row():
run_button = gr.Button("์ด๋ฏธ์ง ์์ฑํ๊ธฐ")
# ์ด๋ฏธ์ง ํฌ๊ธฐ๋ฅผ ์ฌ๋ผ์ด๋์ ๋ฐ์ํ๋ ์ด๋ฒคํธ ์ถ๊ฐ
ip_adapter_image.change(
lambda img: (img.width if img else 1024, img.height if img else 1024),
inputs=ip_adapter_image,
outputs=[width, height] # ์ฌ๋ผ์ด๋ ๊ฐ์ ์ด๋ฏธ์ง ํฌ๊ธฐ ๋ฐ์
)
with gr.Column(elem_id="col-right"):
result = gr.Image(label="Result", show_label=False)
download_button = gr.File(label="์ด๋ฏธ์ง ๋ค์ด๋ฐ๊ธฐ")
# ์ด๋ฏธ์ง ์์ฑ ๋ฐ ๋ค์ด๋ก๋ ํ์ผ ๊ฒฝ๋ก ์ค์
run_button.click(
fn=infer,
inputs=[generated_prompt, ip_adapter_image, ip_adapter_scale, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result, download_button]
)
Kolors.queue().launch(debug=True) |