import spaces import random import torch from huggingface_hub import snapshot_download from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor from kolors.pipelines import pipeline_stable_diffusion_xl_chatglm_256_ipadapter, pipeline_stable_diffusion_xl_chatglm_256 from kolors.models.modeling_chatglm import ChatGLMModel from kolors.models.tokenization_chatglm import ChatGLMTokenizer from kolors.models import unet_2d_condition from diffusers import AutoencoderKL, EulerDiscreteScheduler, UNet2DConditionModel import gradio as gr import numpy as np from huggingface_hub import InferenceClient import os device = "cuda" ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors") ckpt_IPA_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-Plus") text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device) tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder') vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device) scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler") unet_t2i = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device) unet_i2i = unet_2d_condition.UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device) image_encoder = CLIPVisionModelWithProjection.from_pretrained(f'{ckpt_IPA_dir}/image_encoder',ignore_mismatched_sizes=True).to(dtype=torch.float16, device=device) ip_img_size = 336 clip_image_processor = CLIPImageProcessor(size=ip_img_size, crop_size=ip_img_size) pipe_t2i = pipeline_stable_diffusion_xl_chatglm_256.StableDiffusionXLPipeline( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet_t2i, scheduler=scheduler, force_zeros_for_empty_prompt=False ).to(device) pipe_i2i = pipeline_stable_diffusion_xl_chatglm_256_ipadapter.StableDiffusionXLPipeline( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet_i2i, scheduler=scheduler, image_encoder=image_encoder, feature_extractor=clip_image_processor, force_zeros_for_empty_prompt=False ).to(device) if hasattr(pipe_i2i.unet, 'encoder_hid_proj'): pipe_i2i.unet.text_encoder_hid_proj = pipe_i2i.unet.encoder_hid_proj pipe_i2i.load_ip_adapter(f'{ckpt_IPA_dir}' , subfolder="", weight_name=["ip_adapter_plus_general.bin"]) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 @spaces.GPU def infer(prompt, ip_adapter_image=None, ip_adapter_scale=0.5, negative_prompt="", seed=0, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=25): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) # width와 height를 8의 배수로 조정 width = (width // 8) * 8 height = (height // 8) * 8 if ip_adapter_image is None: pipe_t2i.to(device) image = pipe_t2i( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, # 조정된 값을 사용 height=height, # 조정된 값을 사용 generator=generator ).images[0] image.save("generated_image.jpg") return image, "generated_image.jpg" else: pipe_i2i.to(device) image_encoder.to(device) pipe_i2i.image_encoder = image_encoder pipe_i2i.set_ip_adapter_scale([ip_adapter_scale]) image = pipe_i2i( prompt=prompt, ip_adapter_image=[ip_adapter_image], negative_prompt=negative_prompt, height=height, # 조정된 값을 사용 width=width, # 조정된 값을 사용 num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, num_images_per_prompt=1, generator=generator ).images[0] image.save("generated_image.jpg") return image, "generated_image.jpg" css=""" #col-left { margin: 0 auto; max-width: 600px; } #col-right { margin: 0 auto; max-width: 750px; } """ with gr.Blocks(css=css) as Kolors: with gr.Row(): with gr.Column(elem_id="col-left"): with gr.Row(): generated_prompt = gr.Textbox( label="프롬프트 입력", placeholder="이미지 생성에 사용할 프롬프트를 입력해 주세요.", lines=2 ) with gr.Row(): ip_adapter_image = gr.Image(label="참고할 이미지 (선택)", type="pil") with gr.Row(visible=False): # Advanced Settings 숨김 negative_prompt = gr.Textbox( label="Negative prompt", placeholder="Enter a negative prompt", visible=True, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=5.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=10, maximum=50, step=1, value=25, ) with gr.Row(): width = gr.Slider( label="가로", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="세로", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): ip_adapter_scale = gr.Slider( label="이미지 영향력", info="1에 가까울 수록 원본 이미지를 최대한 유지하며 생성됩니다.", minimum=0.0, maximum=1.0, step=0.05, value=0.5, ) with gr.Row(): run_button = gr.Button("이미지 생성하기") # 이미지 크기를 슬라이더에 반영하는 이벤트 추가 ip_adapter_image.change( lambda img: (img.width if img else 1024, img.height if img else 1024), inputs=ip_adapter_image, outputs=[width, height] # 슬라이더 값에 이미지 크기 반영 ) with gr.Column(elem_id="col-right"): result = gr.Image(label="Result", show_label=False) download_button = gr.File(label="이미지 다운받기") # 이미지 생성 및 다운로드 파일 경로 설정 run_button.click( fn=infer, inputs=[generated_prompt, ip_adapter_image, ip_adapter_scale, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs=[result, download_button] ) Kolors.queue().launch(debug=True)